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Abstract

Given a directed graphical model with binary-valued hidden nodes and
real-valued noisy observations, consider deciding upon the maximum
a-posteriori (MAP) or the maximum posterior-marginal (MPM) assign-
ment under the restriction that each node broadcasts only to its children
exactly one single-bit message. We present a variational formulation,
viewing the processing rules local to all nodes as degrees-of-freedom,
that minimizes the loss in expected (MAP or MPM) performance subject
to such online communication constraints. The approach leads to a novel
message-passing algorithm to be executedoffline, or before observations
are realized, which mitigates the performance loss by iteratively cou-
pling all rules in a manner implicitly driven by global statistics. We also
provide (i) illustrative examples, (ii) assumptions that guarantee conver-
gence and efficiency and (iii) connections to active research areas.

1 Introduction

Given a probabilistic model with discrete-valued hidden variables, Belief Propagation (BP)
and related graph-based algorithms are commonly employed to solve for the Maximum A-
Posteriori (MAP) assignment (i.e., the mode of the joint distribution of all hidden variables)
and Maximum-Posterior-Marginal (MPM) assignment (i.e., the modes of the marginal dis-
tributions of every hidden variable) [1]. The established “message-passing” interpretation
of BP extends naturally to a distributed network setting: associating to each node and
edge in the graph a distinct processor and communication link, respectively, the algorithm
is equivalent to a sequence of purely-local computations interleaved with only nearest-
neighbor communications. Specifically, each computation event corresponds to a node
evaluating its localprocessing rule, or a function by which all messages received in the
preceding communication event map to messages sent in the next communication event.

Practically, the viability of BP appears to rest upon an implicit assumption that network
communication resources are abundant. In a general network, because termination of the al-
gorithm is in question, the required communication resources are a-priori unbounded. Even
when termination can be guaranteed, transmission of exact messages presumes communi-
cation channels with infinite capacity (in bits per observation), or at least of sufficiently
high bandwidth such that the resulting finite message precision is essentially error-free. In



some distributed settings (e.g., energy-limited wireless sensor networks), it may be pro-
hibitively costly to justify such idealized online communications. While recent evidence
suggests substantial but “small-enough” message errors will not alter the behavior of BP
[2], [3], it also suggests BP may perform poorly when communication is very constrained.

Assuming communication constraints are severe, we examine the extent to which alterna-
tive processing rules can avoid a loss in (MAP or MPM) performance. Specifically, given
a directed graphical model with binary-valued hidden variables and real-valued noisy ob-
servations, we assume each node may broadcast only to its children a single binary-valued
message. We cast the problem within a variational formulation [4], seeking to minimize a
decision-theoretic penalty function subject to such online communication constraints. The
formulation turns out to be an extension of the optimization problem underlying the decen-
tralized detection paradigm [5], [6], which advocates a team-theoretic [7] relaxation of the
original problem to both justify a particular finite parameterization for all local processing
rules and obtain an iterative algorithm to be executedoffline (i.e., before observations are
realized). To our knowledge, that this relaxation permits analytical progress given any di-
rected acyclic network is new. Moreover, for MPM assignment in a tree-structured network,
we discover an added convenience with respect to the envisioned distributed processor set-
ting: the offline computation itself admits an efficient message-passing interpretation.

This paper is organized as follows. Section 2 details the decision-theoretic variational for-
mulation for discrete-variable assignment. Section 3 summarizes the main results derived
from its connection to decentralized detection, culminating in the offline message-passing
algorithm and the assumptions that guarantee convergence and maximal efficiency. We
omit the mathematical proofs [8] here, focusing instead on intuition and illustrative exam-
ples. Closing remarks and relations to other active research areas appear in Section 4.

2 Variational Formulation

In abstraction, the basic ingredients are (i) a joint distributionp(x, y) for two length-N
random vectorsX andY , taking hidden and observable values in the sets{0, 1}N and
R

N , respectively; (ii) a decision-theoretic penalty functionJ : Γ → R, whereΓ denotes
the set of all candidate strategiesγ : R

N → {0, 1}N for posterior assignment; and (iii) the
setΓG ⊂ Γ of strategies that also respect stipulated communication constraints in a given
N -node directed acyclic networkG. The ensuing optimization problem is expressed by

J(γ∗) = min
γ∈Γ

J(γ) subject toγ ∈ ΓG , (1)

whereγ∗ then represents anoptimal network-constrained strategyfor discrete-variable as-
signment. The following subsections provide details unseen at this level of abstraction.

2.1 Decision-Theoretic Penalty Function

Let U = γ(Y ) denote the decision process induced from the observation processY by
any candidate assignment strategyγ ∈ Γ. If we associate a numeric “cost”c(u, x) to every
possible joint realization of(U,X), then the expected cost is a well-posed penalty function:

J(γ) = E [c (γ(Y ), X)] = E [E [c(γ(Y ), X) | Y ]] . (2)
Expanding the inner expectation and recognizingp(x|y) to be proportional top(x)p(y|x)
for everyy such thatp(y) > 0, it follows thatγ̄∗ minimizes (2) overΓ if and only if

γ̄∗(Y ) = arg min
u∈{0,1}N

∑

x∈{0,1}N

p(x)c(u, x)p(Y |x) with probability one. (3)

Of note are (i) the likelihood functionp(Y |x) is a finite-dimensional sufficient statistic
of Y , (ii) real-valued coefficients̄b(u, x) provide a finite parameterization of the function
spaceΓ and (iii) optimal coefficient values̄b∗(u, x) = p(x)c(u, x) are computable offline.



Before introducing communication constraints, we illustrate by examples how the decision-
theoretic penalty function relates to familiar discrete-variable assignment problems.

Example 1:Let c(u, x) indicate whetheru 6= x. Then (2) and (3) specialize to, respectively,
theword error rate(viewing eachx as anN -bit word) and the MAP strategy:

γ̄∗(Y ) = arg max
x∈{0,1}N

p(x|Y ) with probability one.

Example 2:Let c(u, x) =
∑N

n=1 cn(un, xn), where eachcn indicates whetherun 6= xn.
Then (2) and (3) specialize to, respectively, thebit error rateand the MPM strategy:

γ̄∗(Y ) =

(

arg max
x1∈{0,1}

p(x1|Y ), . . . , arg max
xN∈{0,1}

p(xN |Y )

)

with probability one.

2.2 Network Communication Constraints

Let G(V, E) be any directed acyclic graph with vertex setV = {1, . . . , N} and edge set

E = {(i, j) ∈ V × V | i ∈ π(j) ⇔ j ∈ χ(i)},
where index setsπ(n) ⊂ V andχ(n) ⊂ V indicate, respectively, the parents and children
of each noden ∈ V. Without loss-of-generality, we assume the node labels respect the
natural partial-order implied by the graphG; specifically, we assume every noden has
parent nodesπ(n) ⊂ {1, . . . , n−1} and child nodesχ(n) ⊂ {n+1, . . . , N}. Local to each
noden ∈ V are the respective componentsXn andYn of the joint process(X,Y ). Under
best-case assumptions onp(x, y) andG, Belief Propagation methods (e.g., max-product
in Example 1, sum-product in Example 2) require at least2|E| real-valued messages per
observationY = y, one per direction along each edge inG. In contrast, we insist upon
a single forward-pass throughG where each noden broadcasts to its children (if any) a
single binary-valued message. This yields communication overhead of only|E| bits per
observationY = y, but also renders the minimizing strategy of (3) infeasible.

Accepting that performance-communication tradeoffs are inherent to distributed algo-
rithms, we proceed with the goal of minimizing thelossin performance relative toJ(γ̄∗).
Specifically, we now translate the stipulated restrictions on communication into explicit
constraints on the function spaceΓ over which to minimize (2). The simplest such transla-
tion assumes the binary-valued message produced by noden also determines the respective
componentun in decision vectoru = γ(y). Recognizing that every noden receives the
messagesuπ(n) from its parents (if any) as side information toyn, any function of the form
γn : R × {0, 1}|π(n)| → {0, 1} is a feasibleprocessing rule; we denote the set of all such
rules byΓn. Then, every strategy in the setΓG = Γ1 × · · · × ΓN respects the constraints.

3 Summary of Main Results

As stated in Section 1, the variational formulation presented in Section 2 can be viewed as
an extension of the optimization problem underlying decentralized Bayesian detection [5],
[6]. Even for specialized network structures (e.g., theN -node chain), it is known that exact
solution to (1) is NP-hard, stemming from the absence of a guarantee thatγ∗ ∈ ΓG pos-
sesses a finite parameterization. Also known is that analytical progress can be made for a
relaxation of (1), which is based on the following intuition: if strategyγ∗ = (γ∗

1 , . . . , γ∗
N )

is optimal overΓG , then for eachn and assuming all componentsi ∈ V\n are fixed at
rulesγ∗

i , the component ruleγ∗
n must be optimal overΓn. Decentralized detection has

roots in team decision theory [7], a subset of game theory, in which the relaxation is named
person-by-person(pbp) optimality. While global optimality always implies pbp-optimality,
the converse is false—in general, there can be multiple pbp-optimal solutions with varying



penalty. Nonetheless, pbp-optimality (along with a specialized observation process) jus-
tifies a particular finite parameterization for the function spaceΓG , leading to a nonlinear
fixed-point equation and an iterative algorithm with favorable convergence properties. Be-
fore presenting the general algorithm, we illustrate its application in two simple examples.

Example 3:Consider the MPM assignment problem in Example 2, assumingN = 2 and
distributionp(x, y) is defined by positive-valued parametersα, β1 andβ2 as follows:

p(x) ∝
{

1 , x1 = x2

α , x1 6= x2
and p(y|x) =

N
∏

n=1

1√
2π

exp

[

− (yn − βnxn)2

2

]

.

Note thatX1 andX2 are marginally uniform andα captures their correlation (positive,
zero, or negative whenα is less than, equal to, or greater than unity, respectively), whileY
captures the presence of additive white Gaussian noise with signal-to-noise ratio at noden
equal toβn. The (unconstrained) MPM strategyγ̄∗ simplifies to a pair of threshold rules

L1(y1)

u1 = 1
>
<

u1 = 0

η̄∗
1 =

1 + αL2(y2)

α + L2(y2)
and L2(y2)

u2 = 1
>
<

u2 = 0

η̄∗
2 =

1 + αL1(y1)

α + L1(y1)
,

whereLn(yn) = exp [βn (yn − βn/2)] denotes thelikelihood-ratio local to noden. Let
E = {(1, 2)} and define two network-constrained strategies:myopicstrategyγ0 employs
thresholdsη0

1 = η0
2 = 1, meaning each noden acts to minimizePr[Un 6= Xn] as if in isola-

tion, whereasheuristicstrategyγh employs thresholdsηh
1 = η0

1 andηh
2 = α2u1−1, meaning

node2 adjusts its threshold as ifX1 = u1 (i.e., as if the myopic decision by node1 is always
correct). Figure 1 compares these strategies and a pbp-optimal strategyγk—onlyγk is both
feasible and consistently “hedging” against all uncertainty i.e.,J(γ0) ≥ J(γk) ≥ J(γ̄∗).
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Figure 1. Comparison of the four alternative strategies in Example 3: (a) sketch of the decision
regions in likelihood-ratio space, showing that network-constrained threshold rules cannot exactly
reproducēγ∗ (unlessα = 1); (b) bit-error-rate versusβ1 with α andβ2 fixed, showingγh performs
comparably toγk whenY1 is accurate relative toY2 but otherwise performs worse than evenγ0

(which requires no communication); (c) bit-error-rate versusα with β1 andβ2 fixed, showingγk

uses the allotted bit of communication such that roughly35% of the lossJ(γ0)−J(γ̄∗) is recovered.

Example 4:Extend Example 3 toN > 2 nodes, but assumingX is equally-likely to be
all zeros or all ones (i.e., the extreme case of positive correlation) andY has identically-
accurate components withβn = 1 for all n. The MPM strategy employs thresholds
η̄∗

n =
∏

i∈V\n 1/Li(yi) for all n, leading toU = γ̄∗(Y ) also being all zeros or all ones;
thus, itscost distribution, or the probability mass function forc(γ̄∗(Y ), X), has mass only
on the values 0 andN . The myopic strategy employs thresholdsη0

n = 1 for all n, leading to
independent and identically-distributed (binary-valued) random variablescn(γ0

n(Yn), Xn);
thus, its cost distribution, approaching a normal shape asN gets large, has mass on all val-
ues0, 1, . . . , N . Figure 2 considers a particular directed networkG and, initializing toγ0,
shows the sequence of cost distributions resulting from the iterative offline algorithm—note
the shape progression towards the cost distribution of the (infeasible) MPM strategy and
the successive reduction in bit-error-rateJ(γk). Also noteworthy is the rapid convergence
and the successive reduction in word-error-ratePr[c(γk(Y ), X) 6= 0].
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Figure 2. Illustration of the iterative offline computation givenp(x, y) as described in Example 4
and the directed network shown (N= 12). A Monte-Carlo analysis of̄γ∗ yields an estimate for its
bit-error-rate ofJ(γ̄∗) ≈ 0.49 (with standard deviation of 0.05)—thus, with a total of just|E| = 11
bits of communication, the pbp-optimal strategyγ3 recovers roughly28% of the lossJ(γ0) − J(γ̄∗).

3.1 Necessary Optimality Conditions

We start by providing an explicit probabilistic interpretation of the general problem in (1).

Lemma 1 The minimum penaltyJ(γ∗) defined in (1) is, firstly, achievable by a determin-
istic1 strategy and, secondly, equivalently defined by

J(γ∗) = min
p(u|y)

∑

x∈{0,1}N

p(x)
∑

u∈{0,1}N

c(u, x)

∫

y∈RN

p(u|y)p(y|x) dy

subject to p(u|y) =
∏

n∈V

p(un|yn, uπ(n)).

Lemma 1 is primarily of conceptual value, establishing a correspondence between fix-
ing a component ruleγn ∈ Γn and inducing a decision processUn from the information
(Yn, Uπ(n)) local to noden. The following assumption permits analytical progress towards
a finite parameterization for each function spaceΓn and the basis of an offline algorithm.

Assumption 1 The observation processY satisfiesp(y|x) =
∏

n∈V p(yn|x).

Lemma 2 Let Assumption 1 hold. Upon fixing a deterministic ruleγn ∈ Γn local to node
n (in correspondence withp(un|yn, uπ(n)) by virtue of Lemma 1), we have the identity

p(un|x, uπ(n)) =

∫

yn∈R

p(un|yn, uπ(n))p(yn|x) dyn. (4)

Moreover, upon fixing a deterministic strategyγ ∈ ΓG , we have the identity

p(u|x) =
∏

n∈V

p(un|x, uπ(n)). (5)

Lemma 2 implies fixing component ruleγn ∈ Γn is in correspondence with inducing the
conditional distributionp(un|x, uπ(n)), now a probabilistic description that persists local
to noden no matter the ruleγi at any other nodei ∈ V\n. Lemma 2 also introduces further
structure in the constrained optimization expressed by Lemma 1: recognizing the integral
over R

N to equalp(u|x), (4) and (5) together imply it can be expressed as a product of

1A randomized (or mixed) strategy, modeled as a probabilistic selection from a finite collection
of deterministic strategies, takes more inputs than just the observation processY . That deterministic
strategies suffice, however, justifies “post-hoc” our initial abuse of notation for elements in the setΓ.



component integrals, each overR. We now argue that, despite these simplifications, the
component rules ofγ∗ continue to be globally coupled.

Starting with any deterministic strategyγ ∈ ΓG , consider optimizing thenth component
rule γn overΓn assuming all other components stay fixed. Withγn a degree-of-freedom,
decision processUn is no longer well-defined so eachun ∈ {0, 1} merely represents a
candidate decision local to noden. Online, each local decision will be made only upon re-
ceiving both the local observationYn = yn and all parents’ local decisionsUπ(n) = uπ(n).
It follows that noden, upon deciding a particularun, may assert that random vectorU is re-
stricted to values in the subsetU [uπ(n), un] = {u′ ∈ {0, 1}N | u′

π(n) = uπ(n), u
′
n = un}.

Then, viewing(Yn, Uπ(n)) as a composite local observation and proceeding in the manner
by which (3) is derived, the pbp-optimal relaxation of (1) reduces to the following form.

Proposition 1 Let Assumption 1 hold. In an optimal network-constrained strategy
γ∗ ∈ ΓG , for eachn and assuming all componentsi ∈ V\n are fixed at rulesγ∗

i (each
in correspondence withp∗(ui|x, uπ(i)) by virtue of Lemma 2), the ruleγ∗

n satisfies

γ∗
n(Yn, Uπ(n)) = arg min

un∈{0,1}

∑

x∈{0,1}N

b∗n(un, x;Uπ(n))p(Yn|x) with probability one

(6)
where, for eachuπ(n) ∈ {0, 1}|π(n)|,

b∗n(un, x;uπ(n)) = p(x)
∑

u∈U [uπ(n),un]

c(u, x)
∏

i∈V\n

p∗(ui|x, uπ(i)). (7)

Of note are (i) the likelihood functionp(Yn|x) is a finite-dimensional sufficient statistic of
Yn, (ii) real-valued coefficientsbn provide a finite parameterization of the function space
Γn and (iii) the pbp-optimal coefficient valuesb∗n, while still computable offline, also de-
pend on the distributionsp∗(ui|x, uπ(i)) in correspondence with all fixed rulesγ∗

i .

3.2 Offline Message-Passing Algorithm

Let fn map from coefficients{bi; i ∈ V\n} to coefficientsbn by the following operations:

1. for eachi ∈ V\n, computep(ui|x, uπ(i)) via (4) and (6) givenbi andp(yi|x);

2. computebn via (7) givenp(x), c(u, x) and{p(ui|x, uπ(i)); i ∈ V\n}.

Then, the simultaneous satisfaction of Proposition 1 at allN nodes can be viewed as a
system of2N+1

∑

n∈V 2|π(n)| nonlinear equations in as many unknowns,

bn = fn(b1, . . . , bn−1, bn+1, . . . , bN ), n = 1, . . . , N, (8)

or, more concisely,b = f(b). The connection between eachfn and Proposition 1 affords
an equivalence between solving the fixed-point equationf via a Gauss-Seidel iteration and
minimizing J(γ) via a coordinate-descent iteration [9], implying an algorithm guaranteed
to terminate and achieve penalty no greater than that of an arbitrary initial strategyγ0 ↔ b0.

Proposition 2 Initialize to any coefficientsb0 = (b0
1, . . . , b

0
N ) and generate the sequence

{bk} using a component-wise iterative application off in (8) i.e., fork = 1, 2, . . . ,

bk
n := fn(bk−1

1 , . . . , bk−1
n−1, b

k
n+1, . . . , b

k
N ), n = N,N − 1, . . . , 1. (9)

If Assumption 1 holds, the associated sequence{J(γk)} is non-increasing and converges:

J(γ0) ≥ J(γ1) ≥ · · · ≥ J(γk) → J∗ ≥ J(γ∗) ≥ J(γ̄∗).



Direct implementation of (9) is clearly imprudent from a computational perspective, be-
cause the transformation from fixed coefficientsbk

n to the corresponding distribution
pk(un|x, uπ(n)) need not be repeated within every component evaluation off . In fact,
assuming every noden stores in memory its own likelihood functionp(yn|x), this trans-
formation can be accomplished locally (cf. (4) and (6)) and, also assuming the resulting
distribution is broadcast to all other nodes before they proceed with their subsequent com-
ponent evaluation off , the termination guarantee of Proposition 2 is retained. Requiring
every node to perform a network-wide broadcast within every iterationk makes (9) a decid-
edly global algorithm, not to mention that each noden must also store in memoryp(x, yn)
andc(u, x) to carry forth the supporting local computations.

Assumption 2 The cost function satisfiesc(u, x) =
∑

n∈V cn(un, x) for some collection
of functions{cn : {0, 1}N+1 → R} and the directed graphG is tree-structured.

Proposition 3 Under Assumption 2, the following two-pass procedure is identical to (9):

• Forward-pass at noden: upon receiving messages from all parentsi ∈ π(n), store them
for use in the next reverse-pass and send to each childj ∈ χ(n) the following messages:

P k
n→j(un|x) :=

∑

uπ(n)∈{0,1}|π(n)|

pk−1
(

un|x, uπ(n)

)

∏

i∈π(n)

P k
i→n(ui|x). (10)

• Reverse-pass at noden: upon receiving messages from all childrenj ∈ χ(n), update

bk
n

(

un, x;uπ(n)

)

:= p(x)
∏

i∈π(n)

P k
i→n(ui|x)



cn(un, x) +
∑

j∈χ(n)

Ck
j→n(un, x)



 (11)

and the corresponding distributionpk(un|x, uπ(n)) via (4) and (6), store the distribution
for use in the next forward pass and send to each parenti ∈ π(n) the following messages:

Ck
n→i(ui, x) :=

∑

un∈{0,1}

p(un|x, ui)



cn(un, x) +
∑

j∈χ(n)

Ck
j→n(un, x)



 , (12)

p(un|x, ui) =
∑

uπ(n)∈{u′∈{0,1}|π(n)||u′
i
=ui}

pk
(

un|x, uπ(n)

)

∏

ℓ∈π(n)\i

P k
ℓ→n(uℓ|x).

An intuitive interpretation of Proposition 3, from the perspective of noden, is as follows.
From (10) in the forward pass, the messages received from each parent define what, dur-
ing subsequent online operation, that parent’s local decision means (in a likelihood sense)
about its ancestors’ outputs and the hidden process. From (12) in the reverse pass, the mes-
sages received from each child define what the local decision will mean (in an expected
cost sense) to that child and its descendants. From (11), both types of incoming messages
impact the local rule update and, in turn, the outgoing messages to both types of neighbors.
While Proposition 3 alleviates the need for the iterative global broadcast of distributions
pk(un|x, uπ(n)), the explicit dependence of (10)-(12) on the full vectorx implies the mem-
ory and computation requirements local to each node can still be exponential inN .

Assumption 3 The hidden processX is Markov onG, or p(x) =
∏

n∈V p(xn|xπ(n)), and
all component likelihoods/costs satisfyp(yn|x) = p(yn|xn) andcn(un, x) = cn(un, xn).

Proposition 4 Under Assumption 3, the iterates in Proposition 3 specialize to the form of

bk
n(un, xn;uπ(n)), P k

n→j(un|xn) and Ck
n→i(ui, xi), k = 0, 1, . . .

and each noden need only store in memoryp(xπ(n), xn, yn) andcn(un, xn) to carry forth
the supporting local computations. (The actual equations can be found in [8].)



Proposition 4 implies the convergence properties of Proposition 2 are upheld with maximal
efficiency (linear inN ) whenG is tree-structured and the global distribution and costs sat-
isfy p(x, y) =

∏

n∈V p(xn|xπ(n))p(yn|xn) andc(u, x) =
∑

n∈V cn(un, xn), respectively.
Note that these conditions hold for the MPM assignment problems in Examples 3 & 4.

4 Discussion

Our decision-theoretic variational approach reflects several departures from existing meth-
ods for communication-constrained inference. Firstly, instead of imposing the constraints
on an algorithm derived from an ideal model, we explicitly model the constraints and de-
rive a different algorithm. Secondly, our penalty function drives the approximation by the
desired application of inference (e.g., posterior assignment) as opposed to a generic error
measure on the result of inference (e.g., divergence in true and approximate marginals).
Thirdly, the necessary offline computation gives rise to a downside, namely less flexibility
against time-varying statistical environments, decision objectives or network conditions.

Our development also evokes principles in common with other research areas. Similar to
the sum-product version of Belief Propagation (BP), our message-passing algorithm origi-
nates assuming a tree structure, an additive cost and a synchronous message schedule. It is
thus enticing to claim that the maturation of BP (e.g., max-product, asynchronous sched-
ule, cyclic graphs) also applies, but unique aspects to our development (e.g., directed graph,
weak convergence, asymmetric messages) merit caution. That we solve for correlated equi-
libria and depend on probabilistic structure commensurate with cost structure for efficiency
is in common with graphical games [10], which distinctly are formulated on undirected
graphs and absent of hidden variables. Finally, our offline computation resembles learning
a conditional random field [11], in the sense that factors ofp(u|x) are iteratively modified
to reduce penaltyJ(γ); online computation via strategyu = γ(y), repeated per realization
Y = y, is then viewed as sampling from this distribution. Along the learning thread, a
special case of our formulation appears in [12], but assumingp(x, y) is unknown.
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