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Abstract

Fisher linear discriminant analysis (LDA) can be sensitive to the prob-
lem data. Robust Fisher LDA can systematically alleviate the sensitivity
problem by explicitly incorporating a model of data uncertainty in a clas-
sification problem and optimizing for the worst-case scenario under this
model. The main contribution of this paper is show that with general
convex uncertainty models on the problem data, robust Fisher LDA can
be carried out using convex optimization. For a certain type of product
form uncertainty model, robust Fisher LDA can be carried out at a cost
comparable to standard Fisher LDA. The method is demonstrated with
some numerical examples. Finally, we show how to extend these results
to robust kernel Fisher discriminant analysis,, robust Fisher LDA in a
high dimensional feature space.

1 Introduction

Fisher linear discriminant analysis (LDA), a widely-used technique for pattern classifica-
tion, finds a linear discriminant that yields optimal discrimination between two classes
which can be identified with two random variables, $&yandY in R™. For a (linear)
discriminant characterized by € R", the degree of discrimination is measured by the
Fisher discriminant ratio

wl(X,; + Xy)w wl (2, + 3, )w’

wherep, andX, (1, andX,) denote the mean and covarianceX({Y). A discriminant
that maximizes the Fisher discriminant ratio is given by

wM = (Ex + Ey)il(/% - ,LLy),

which gives the maximum Fisher discriminant ratio

f(w Py My Y Zy) = ’LUT(’u,z — My)(,um - ;Ly)Tw . (wT(uz _ :uy))2

(Ha — Uy)T(Zr + Ey)il(ﬂm — Hy) = Igzé(f(wmumaﬂya Yoy By)-

In applications, the problem daja,, p,, X, and¥, are not known but are estimated
from sample data. Fisher LDA can be sensitive to the problem data: the discriminant
w™*™ computed from an estimate of the parameters 1, X, andX, can give very



poor discrimination for another set of problem data thatgs alreasonable estimate of the
parameters. In this paper, we attempt to systematically alleviate this sensitivity problem
by explicitly incorporating a model of data uncertainty in the classification problem and
optimizing for the worst-case scenario under this model.

We assume that the problem data 1., ¥, and%, are uncertain, but known to belong to

a convex compact subggtof R" x R" x S | x S% .. Here we us&’ | (S!) to denote

the set of alln x n symmetric positive definite (semidefinite) matrices. We make one
technical assumption: for ea€p,, 1y, ., X,) € U, we haveu, # u,. This assumption

simply means that for each possible value of the means and covariances, the classes are
distinguishable via Fisher LDA.

The worst-case analysis problewf finding the worst-case means and covariances for a
given discriminantw can be written as

m|n|m|Ze f(walu‘ihuyvzxazy) (1)
subjectto (piq, ty, Xa, Xy) € U,

with variablesy,, p,, ¥,, andX,. The optimal value of this problem is thveorst-case
Fisher discriminant ratiqover the clasg/ of possible means and covariances), and any op-
timal points for this problem are calledorst-case means and covariances. These depend
onw.

We will show in§2 that (1) is a convex optimization problem, since the Fisher discriminant
ratio is a convex function ofi,, i, ¥4, X, for a given discriminantv. As a result, it is
computationally tractable to find the worst-case performance of a discrimineaner the

set of possible means and covariances.

The robust Fisher LDA problenis to find a discriminant that maximizes the worst-case
Fisher discriminant ratio. This can be cast as the optimization problem

maximize min W, fhasy Py Dy 2
. (Hm7#1172mv21;)61/{f( a My U) (2)
subjectto w # 0,

with variablew. We denote any optimab for this problem asv*. Here we choose a linear
discriminant that maximizes the Fisher discrimination ratio, with the worst possible means
and covariances that are consistent with our data uncertainty model.

The main result of this paper is to give an effective method for solving the robust Fisher
LDA problem (2). We will show in52 that the robust optimal Fisher discriminant can
be found as follows. First, we solve the (convex) optimization problem

minimize rllulgg)cf(w, fzs Hyy Dy By) = (= py) T (B +2y) " (1 — pay)

3
subjectto (piq, ty, Xa, Xy) € U, 3

with variables(ji,, p1,,, %z, 3y). Let (uy, py, 35, X7 ) denote any optimal point. Then the

discriminant .

wh = (S 43 (- ) (4)
is a robust optimal Fisher discriminante., it is optimal for (2). Moreover, we will see
thaty;, py andX;, X7 are worst-case means and covariances for the robust optimal Fisher
discriminantw*. Since convex optimization problems are tractable, this means that we
have aractable general methofbr computing a robust optimal Fisher discriminant.

A robust Fisher discriminant problem of modest size can be solved by standard convex
optimization methodsg.g., interior-point methods [3]. For some special forms of the un-
certainty model, the robust optimal Fisher discriminant can be solved more efficiently than
by a general convex optimization formulation.§®, we consider an important special form

for U for which a more efficient formulation can be given.



In comparison with the ‘nominal’ Fisher LDA, which is based the means and covari-
ances estimated from the sample data set without considering the estimation error, the
robust Fisher LDA performs well even when the sample size used to estimate the means
and covariances is small, resulting in estimates which are not accurate. This will be demon-
strated with some numerical exampleg4h

Recently, there has been a growing interest in kernel Fisher discriminant analy$isher

LDA in a higher dimensional feature spaegg., [7]. Our results can be extended to robust
kernel Fisher discriminant analysis under certain uncertainty models. This will be briefly
discussed ig5.

Various types of robust classification problems have been considered in the prior litera-
ture,e.g., [2, 5, 6]. Most of the research has focused on formulating robust classification
problems that can be efficiently solved via convex optimization. In particular, the robust
classification method developed in [6] is based on the criterion

W (pa — 1)
wTBw)/2 + (wT'E w)t/2’

g(wwmlly,zm Zy) = (

which is similar to the Fisher discriminant ratfo With a specific uncertainty model on the
means and covariances, the robust classification problem with discrimination criteaan

be cast as a second-order cone program, a special type of convex optimization problem [5].
With general uncertainty models, however, it is not clear whether robust discriminant anal-
ysis withg can be performed via convex optimization.

2 Robust Fisher LDA

We first consider the worst-case analysis problem (1). Here we consider the discriminant
as fixed, and the parametets, p,, ¥,, andX, are variables, constrained to lie in the
convex uncertainty seéf. To show that (1) is a convex optimization problem, we must
show that the Fisher discriminant ratio is a convex functiopgf i, ¥, and%,. To
show this, we express the Fisher discriminant rgtas the composition

f(waﬂmuya Eiﬁazy) = g(H(vauya Efwzy))a

whereg(u, t) = u?/t andH is the function
H(,uxv Hys E&L’v Ey) = (wT(Mw - /Ly)v wT(E:C + Ey)w)

The functionH is linear (as a mapping froma,, 11,, ¥,, andy, into R?), and the function
g is convex (provided > 0, which holds here). Thus, the compositignis a convex
function of u,, py, X,, and,. (See [3].)

Now we turn to the main result of this paper. Consider a function of the form
(w”a)?
wl Bw’

which is the Rayleigh quotient for the matrix pait” € S andB € S, evaluated atv.
The robust Fisher LDA problem (2) is equivalent to a problem of the form

R(w,a,B) = (®)

maximize min R(w,a, B)
) (a,B)eV (6)
subjectto w # 0,
where

a = flg =y, B=%X,+3, V= {(.ux_ﬂyvzx'i_zy) | (ﬂxv#yazﬂfvzy) € U}. (7)



(This equivalence means that robust FLDA is a special typelfist matched filtering
problem studied in the 1980s; seeg., [8] for more on robust matched filtering.)

We will prove a ‘nonconventional’ minimax theorem for a Rayleigh quotient of the
form (5), which will establish the main result describedsih To do this, we consider
a problem of the form
minimize o’ B~ la g
subjectto (a,B) €V, (8)
with variablesa € R", B € S, andV is a convex compact subsetRf x S’ , such
that for eacha, B) € V, a is not zero. The objective of this problem is a matrix fractional
function and so is convex dR™ x S% | ; see [3,§3.1.7]. Our problem (3) is the same as (8),
with (7). It follows that (3) is a convex optimization problem.

The following theorem states the minimax theorem for the fundiolvhile R is convex in
(a, B) for fixed w, it is not concave inw for fixed (a, B), so conventional convex-concave
minimax theorems do not apply here.

Theorem 1. Let(a*, B*) be an optimal solution to the problem (8), anddet = B*~'a*.
Then(w*, a*, B*) satisfies the minimax property

R(w*,a*,B*) = max min R(w,a,B)= min max R(w,a,B), 9
w#0 (a,B)EV (a,B)eV w#0

and the saddle point property
R(w,a*, B*) < R(w*,a*, B*) < R(w*,a, B), Vw € R"\{0}, V(a,B) € V. (10)
Proof. It suffices to prove (10), since the saddle point property (10) implies the minimax

property (9) [1,§2.6]. We start by observing th&t(w, «*, B*) is maximized over nonzero
w # 0 by w* = B*~'a* (by the Cauchy-Schwartz inequality). What remains is to show

in R(w*,a, B) = R(w*,a*, B*). 11
oo (w*,a, B) = R(w*,a", B*) (11)

Sincea* and B* are optimal for the convex problem (8) (by definition), they must satisfy
the optimality condition

(Vala"B0)| . poys(a=a*) + (Vp(aTB~a)| . 5.\, (B~ B*))
>0, V(a,B)eV

(see [3,§4.2.3]). UsingV,(a"B~'a) = 2B~ 'a, Vp(a" B~ 'a) = —B~'aa” B!, and
(X,Y)=Tr(XY)for X,Y € S, whereTr denotes trace, we can express the optimality
condition as

20*"B* Y(a — a*) = TrB* *a*a* ' B* " Y(B—B*) >0, V(a,B)€V,
or equivalently,

T@—a*)—w"(B-B)w" >0, V(a,B)eV. (12)

2w

Now we turn to the convex optimization problem

minimize R(w*,a, B)

subjectto (a,B) €V, (13)

with variables(a, B). We will show that(a*, B*) is optimal for this problem, which will
establish (11).



A pair (a, B) is optimal for (13) if and only if

(w*Ta)2 ~ (w*Ta)2 B
<Vam 777(‘1*@) + VBm 77)(BfB) >0, V(a,B)€eV.
(a,B) (a,B)
Using
o (w*Ta)? _ aTw* . v, (wTa)? o (aTw*)? T
“w*T Bw* w*Bw* w*T Bw~* (w*T Bw~*)?2 ’
the optimality condition can be written as
a'w* 7 _ @w)? T 3
wTBw " OO T TR (BB
dTU)* T ~ (ELTU}*)Q T B .

> 0, V(a,B)eV.

Substitutinga = a*, B = B*, and noting that*"w* /w*? B*w* = 1, the optimality
condition reduces to

2w*” (a — a*) —w* (B — B*)w* >0, V(a,B)eV,

which is precisely (12). Thus, we have shown that, B*) is optimal for (13), which in
turn establishes (11). O

3 Robust Fisher L DA with product form uncertainty models

In this section, we focus on robust Fisher LDA with the product form uncertainty model
U=MxS, (14)

where M is the set of possible means afds the set of possible covariances. For this
model, the worst-case Fisher discriminant ratio can be written as

T _ 2
f(av P s My s Ez, Ey) = min (w (/1'30 ,U/y))

min .
(/lmauyazmvzy)eu (vauy)EM maX(Ew,Ey)eS U]T(El + Ey)w

If we can find an analytic expression forax (s, s jes wT (2, + X,)w (as a function of
w), we can simplify the robust Fisher LDA problem.

As a more specific example, we consider the case in whishgiven by

S = 8.xS, i
Sy = {Ey ‘ Yy = 0, sz - Ey”F < 5y}7

whered,, &, are positive constants;,, &, € S, and||A|| r denotes the Frobenius norm

of A,i.e.[|A|r = (327 ;_, A%;)"/2. For this case, we have

(2312%,)){65 w’ (8, + Ty)w = w' (8 + By + (8 + dy) Hw. (16)

Here we have used the fact that for givere S , , maxy,_5 <5 27 Xz = 27 (S +01)z
(seee.qg., [6]). The worst-case Fisher discriminant ratio can be expressed as

, (W (pe — 1y))*
min — ~ )
(Mo 11y ) EM wT(Ez + Ey + ((5T + 53,)1)10




This is the same worst-case Fisher discriminant ratio obthfar a problem in which the
covariances are certaire., fixed to bex, + 6,1 andX, + 6, /, and the means lie in the set
M. We conclude that a robust optimal Fisher discriminant with the uncertainty model (14)
in which S has the form (15) can be found by solving a robust Fisher LDA problem with
these fixed values for the covariances. From the general solution method descfibgt in

is given by

* N N -1 * *
w' = (B + By + (6 +0,)I)  (n; — thy)s
wherey; andy;; solve the convex optimization problem

minimize (12 — 15)" (So + Sy + (0 + 0,)1) " (1 — p1y) (17)
subjectto (fiy, fy) € M,

with variablesu, andy,.

The problem (17) is relatively simple: it involves minimizing a convex quadratic function
over the set of possible, and,. For example, itM is a product of two ellipsoids, (e.g.,

1, andp,, each lie in some confidence ellipsoid) the problem (17) is to minimize a convex
guadratic subject to two convex quadratic constraints. Such a problem is readily solved in
O(n?) flops, since the dual problem has two variables, and evaluating the dual function
and its derivatives can be doned@nn?) flops [3]. Thus, the effort to solve the robust is

the same order (i.en?) as solving the nominal Fisher LDA (but with a substantially larger
constant).

4 Numerical results

To demonstrate robust Fisher LDA, we use the sonar and ionosphere benchmark problems
from the UCI repository (ww. i cs. uci . eduf*ml earn/ MLReposi tory. ht m ).

The two benchmark problems have 208 and 351 points, respectively, and the dimension
of each data point is 60 and 34, respectively. Each data set is randomly partitioned into
a training set and a test set. We use the training set to compute the optimal discriminant
and then test its performance using the test set. A larger training set typically gives better
test performance. We let denote the size of the training set, as a fraction of the total
number of data points. For examplte,= 0.3 means tha80% of the data points are used

for training, and70% are used to test the resulting discriminant. For various values of

we generata 00 random partitions of the data (for each of the two benchmark problems),
and collect the results.

We use the following uncertainty models for the meaps,, and the covariances,, ¥,

(Nz_ﬂx)TPx(Mx_ﬂx) <1, ||Ex—izHF < Pz,
(1y _/ly)TPy(My — fy) <1, ||Zy_ZyHF < py,

Here the vectorgi,, i, represent the nominal means and the matricess, represent

the nominal covariances, and the matriégs P, and the constantg, andp, represent

the confidence regions. The parameters are estimated through a resampling technique [4]
as follows. For a given training set we create 100 new sets by resampling the original
training set with a uniform distribution over all the data points. For each of these sets we
estimate its mean and covariance and then take their average values as the nominal mean
and covariance. We also evaluate the covariaigeof all the means obtained with the
resampling. We then take, = E;l/n and P, = Zgl/n. This choice corresponds

to a50% confidence ellipsoid in the case of a Gaussian distribution. The parameters
andp, are taken to be the maximum deviations between the covariances and the average
covariances in the Frobenius norm sense, over the resampling of the training set.
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Figure 1: Test-set accuracy (TSA) for sonar and ionospherehmeark versus size of the
training set. The solid line represents the robust Fisher LDA results and the dotted line the
nominal Fisher LDA results. The vertical bars represent the standard deviation.

Figure 1 summarizes the classification results. For each of our two problems, and for each
value ofa, we show the average test set accuracy (TSA), as well as the standard deviation
(over thel00 instances of each problem with the given valuexpf The plots show the
robust Fisher LDA performs substantially better than the nominal Fisher LDA for small
training sets, but this performance gap disappears as the training set becomes larger.

5 Robust kernel Fisher discriminant analysis

In this section we show how to ‘kernelize’ the robust Fisher LDA. We will consider only

a specific class of uncertainty models; the arguments we develop here can be extended to
more general cases. In the kernel approach we map the problem to an higher dimensional
spaceR/ via a mapping : R* — R/ so that the new decision boundary is more general
and possibly nonlinear. Let the data be mapped as

z— A(x) ~ (iga) So))s ¥ — W) ~ (Foy) Soy))-

The uncertainty model we consider has the form

() = Holy) = Ho(x) — Ho(y) + Pug, lugll <1,

18
ISot) — Zo@lF < por |1 Zo) — Sowllr < py- (18)

Here the vectorgi, ., fis(y) fepresent the nominal means, the matriggs, ), £, rep-

resent the nominal covariances, and the (positive semidefinite) nfatind the constants

p. andp, represent the confidence regions in the feature space. The worst-case Fisher
discriminant ratio in the feature space is then given by

(W} (fg(x) — o) + Pug))?

min
Wi (Bg(z) + o) )wy

lup <L g(2) =g (@) | F <P Z ) —Za ) [l 7 <py
The robust kernel Fisher discriminant analysis problem is to find the discriminant in the
feature space that maximizes this ratio.

Using the technique described{8, we can see that the robust kernel Fisher discriminant
analysis problem can be cast as
~ (W} (o) — Ag(y) + Puys))?
min = —
lusli<t Wi (Zgca) + gy + (pz + py) Dwy
subjectto wy # 0,

maximize (19)



where the discriminant; € R/ is defined in the new feature space.

To apply the kernel trick to the problem (19), the nonlinear decision boundary should be
entirely expressed in terms of inner products of the mapped data only. The following
proposition tells us a set of conditions to do so.

Proposition 1. Given the sample pointsz;} Y+, and {yi}fvjl, Suppose thatiy () fe(y),
So(2) Se(y), and P can be written as
— Ny — Ny
fige) = 2ica Nd(@i),  Fgy) = it Miwn, 0(yi), P =UYUT,
3 Nz _ _
Bpa) = iy Nii(B(x:) = fig(a)) (B(x:) = figa)) "
S Ny _ _
Soty) = 2it Nit N, i+ N (W) — o)) ((4i) — gy
Ng+N. No+Ny No+Ny H H H H
wherel € RY="%, T € S yAesS, is a diagonal matrix, and/ is a matrix
whose columns are the vectdig(z;) — /j¢(w)}f\’;l and{¢(y;) — /jd,(y)}fv:’yl. Denote asb
the matrix whose columns are the vectpeg ;) } v, {¢(yi)}£\’;’1 and define
Dy =KpB, Dy=K(I-\NH)TT - LK,
Dy = K(I - MEHAI ~ NMEKT + (0, +p,)K, D= K,
whereK is the kernel matrix¢;; = (®7®),;, 1y is a vector of ones of lengtN,. + N,

and g € RN=+Nyv js such thatg; = \; fori =1,...,N, and3; = —\; fori = N, +
1,..., N, + N,. Letr* be an optimal solution of the problem
o V(D1 + D2€)(Dy + D2§)"v
maximize fT%ligﬁl ST Dy (20)
subjectto v # 0.

Then,w} = ®v* is an optimal solution of the problem (19). Moreover, for every point
z € R™,

)T

)

Nm Ny
wid(z) = Vi K(z,2:) + Y _vin K(z, ). (21)
i=1 i=1
Along the lines of the proofs of Corollary 5 in [6], we can prove this proposition.
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