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Abstract
The category of visual stimuli has been reliably decoded from patterns 
of neural activity in extrastriate visual cortex [1]. It has yet to be seen 
whether object identity can be inferred from this activity. We present 
fMRI data measuring responses in human extrastriate cortex to a set of 
12 distinct object images. We use a simple winner-take-all classifier, 
using half the data from each recording session as a training set, to 
evaluate encoding of object identity across fMRI voxels. Since this 
approach is sensitive to the inclusion of noisy voxels, we describe two 
methods for identifying subsets of voxels in the data which optimally 
distinguish object identity. One method characterizes the reliability of 
each voxel within subsets of the data, while another estimates the 
mutual information of each voxel with the stimulus set. We find that 
both metrics can identify subsets of the data which reliably encode 
object identity, even when noisy measurements are artificially added to 
the data. The mutual information metric is less efficient at this task, 
likely due to constraints in fMRI data.

1 Introduction
Humans and other primates can perform fast and efficient object recognition. This ability 
is mediated within a large extent of occipital and temporal cortex, sometimes referred to 
as  the  ventral  processing  stream  [10].  This  cortex  has  been  examined  using 
electrophysiological  recordings,  optical  imaging  techniques,  and  a  variety  of 
neuroimaging techniques including functional magnetic resonance imaging (fMRI) [refs]. 
With fMRI, these regions can be reliably identified by their strong preferential response 
to intact objects over other visual stimuli [9,10]. 

The functional organization of object-selective cortex is unclear. A number of regions 
have  been  identified  within  this  cortex,  which  preferentially  respond  to  particular 
categories of images [refs]; it has been proposed that these regions are specialized for 
processing visual information about those categories [refs]. A recent study by Haxby and 



colleagues [1] found that the category identity of different stimuli could be decoded from 
fMRI response patterns, using a simple classifier in which half of each data set was used 
as a training set and half as a test set. These results were interpreted as evidence for a 
distributed representation of  objects across ventral  cortex,  in which both positive and 
negative responses contribute information about object identity. It is not clear, however, 
to what extent information about objects is processed at the category level, and to what 
extent it reflects individual object identity, or features within objects [1,8].

The  study  in  [1]  is  one of  a  growing  number  of  recent  attempts  to  decode stimulus 
identity  by  examining  fMRI  response  patterns  across  cortex  [1-4].  fMRI  data  has 
particular advantages and disadvantages for this approach. Among its advantages are the 
ability to make many measurements across a large extent of cortex in awake, behaving 
humans. Its disadvantages include temporal and spatial resolution constraints, which limit 
the number of trials that may be collected; the ability to examine trial-by-trial variation; 
and potentially limit the localization of small neuronal populations. A further potential 
disadvantage arises from the little-understood functional organization of object-selective 
cortical  regions.  Because  it  is  not  clear  which  parts  of  this  cortex  are  involved  in 
representing  different  objects  and  which  aren’t,  analyses  may  include  fMRI  image 
locations (voxels) which are not involved in object representation. 

The  present  study addresses  a  number  of  these questions  by examining the response 
patterns across object-selective cortex to a set of 12 individual object images, using high-
resolution fMRI. We sought to address the following experimental questions: (1) Can 
individual object identity be decoded from fMRI responses in object-selective cortex? (2) 
How can one identify those subsets of fMRI voxels which reliably encode identity about 
a  stimulus,  among  a  large  set  of  potentially  unrelated  voxels?  We  adopt  a  similar 
approach to that described in [1], subdividing each data set into training and test subsets, 
and evaluate the efficiency of a set of voxels in discriminating object identity among the 
12 possible images with a simple winner-take-all classifier. We then describe two metrics 
from which to identify sets of voxels which reliably discriminate different objects. The 
first metric estimates the replicability of voxels to each stimulus between the training and 
the test data. The second metric estimates the mutual information each voxel has with the 
stimulus set. 

2 Experimental design and data collection
Our experimental design is summarized in Figure 1. We chose a stimulus set of 12 line 
drawings of different object stimuli, shown in Figure 1a. These objects can be readily 
categorized  as  faces,  animals,  or  vehicles;  these  categories  have  been  previously 
identified as producing distinct patterns of blood-oxygenation-level-dependent (BOLD) 
response in object-selective cortex [10]. This allows us to compare category and object 
identity as potential explanatory factors for BOLD response patterns. Further, the use of 
black-and-white  line  drawings  reduces  the  number  of  stimulus  features  which 
differentiate the stimuli, such as spatial frequency bands. 

A typical trial is illustrated in Figure 1b. We presented one of the 12 object images to the 
subject within the foveal 5 degrees of visual field for 2 sec, then masked the image with a 
scrambled version of a random image for 10 sec. These scrambled images are known to 
produce  minimal  response  in  our  regions  of  interest  [11],  and  serve  as  a  baseline 
condition for these experiments. Each scan contained one trial per image, presented in a 
randomized  order.  We ran  10-15  event-related  scans  for  each scanning  session.  This 
allowed us to collect full hemodynamic responses to each image, which in BOLD signal 
lags several seconds after stimulus onset. In this way we were able to analyze trial-by-
trial  variations  in  response  to  different  images,  without  the  analytic  and  design 
restrictions involved in analyzing fMRI data with more closely-spaced trials [5]. This 
feature was essential for computing the mutual information of a voxel with the stimulus 
set.  



Figure 1: Experimental Design. (a) The 12 object stimuli used. (b) Example of a typical 
trial. (c) Depiction of imaged region during one session. The image is an axial slice from 
a  T1-weighted  anatomical  image  for  one  subject.  The  blue  region  shows  the  region 
imaged at high resolution. The white outlines show gray matter within the imaged area.

We obtained high-resolution fMRI images at 3 Tesla using a spiral-out protocol. We used 
a custom-built receive-only surface coil. This coil was small and flexible, with a 7.5 cm 
diameter, and could be placed on a subject’s skull directly over the region to be imaged. 
Because of the restricted field of view of this coil, we imaged only right hemisphere 
cortex  for  these  experiments.  We  imaged  4  subjects  (1  female),  each  of  whom 
participated in multiple recording sessions.  For each recording session, we imaged 12 
oblique slices, with voxel dimensions of 1 x 1 x 1 mm and a frame period of 2 seconds. 
(More typical fMRI resolutions are around 3 x 3 x 3 mm–3x3x6 mm, at least 27 times 
lower in resolution.) A typical imaging prescription, superimposed over a high-resolution 
T1-weighted anatomical image, is shown in Figure 1c. 

Functional data from these experiments are illustrated in Figure 2. Within each session, 
we identified object-selective voxels by applying a general linear model to the time series 
data,  estimating  the  amplitude  of  BOLD  response  to  different  images  [5].  We  then 
computed contrast maps representing T tests of response of different images against the 
baseline scrambled condition. An example of voxels localized in this way is illustrated in 
Figure 2a, superimposed over mean T1-weighted anatomical images for two slices. Our 
criterion for defining object-selective voxels was that a voxel needed to respond to at 
least one of the 12 stimulus images relative to baseline with a significance level of  p ≤ 
0.001. Each data set contained between 600 and 2500 object-selective voxels. 

The design of our surface coil, combined with its proximity to the imaged cortex, allowed 
us to observe significant event-related responses within single voxels. Figure 2b shows 
peri-stimulus time courses to each image from four sample voxels. These responses are 
summarized  by  subtracting  the  mean  BOLD  response  after  stimulus  onset  with  the 
response  during  the  baseline  period,  as  illustrated  in  Figure  2c.  In  this  way we  can 
summarize a data set as a matrix A of response amplitudes to different voxels, where Ai,j 
represents the response to the ith image of the jth voxel. These responses are statistically 
significant (T test, p < 0.001) for many stimuli, yet the voxels are heterogeneous in their 
responses—different voxels respond to different stimuli. This response diversity prompts 
the  questions  of  deciding  which  sets  of  responses,  if  any,  are  informative  of  image 
identity.
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Figure 2: Experimental Data. (a)  T1-weighted anatomical images from a sample session, 
with object-selective voxels indicated in orange. (b) Mean peristimulus time courses from 
4 object-selective voxels in the lower slice of (a) (locations indicated by arrow), for each 
image. Dotted lines indicate trial onset; dark bars at bottom indicate stimulus presentation 
duration. Scale bars indicate 10 seconds duration and 10 percent BOLD signal change 
relative  to  baseline.  (c) Mean  response  amplitudes  from the  voxels  depicted  in  (b), 
represented as a set of column vectors for each voxel. Color indicates mean amplitude 
during post-stimulus period relative to pre-stimulus period. 

3 Winner-take-all classifier
Given  a  set  of  response  amplitudes  across  object-selective  voxels,  how  can  we 
characterize the discriminabilty of responses to different stimuli? This question can be 
answered by constructing a classifier,  which takes a  set  of  responses to  an unknown 
stimulus, and compares it to a training set of responses to known stimuli. This general 
approach has been successfully applied to fMRI responses in early visual cortex [3-4], 
object-selective cortex [1], and across multiple cortical regions [2].

For our classifier, we adopt the approach used in [1], with a few refinements. As in the 
previous study, we subdivide each data set into a training set and a test set, with the 
training set representing odd-numbered runs and the test set representing even-numbered 
runs. (Since each run contains one trial per image, this is equivalent to using odd- and 
even-numbered trials).  We construct  a  training matrix,  Atraining,  in  which each row 
represents the response across voxels to a different image in the training data set. We 
construct a second matrix, Atest, which contains the responses to different images during 
the test set. These matrices are illustrated for one data set in Figure 3a. Each row of Atest 
is considered to be the response to an unknown stimulus, and is compared to each of the 
rows in  Atraining. The overall performance of the classifier is evaluated by its success 
rate at classifying test responses based on the correlation to training responses.
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Figure 3: Illustration of winner-take-all classifier for two sample sessions. (a) Response 
amplitudes for all object-selective voxels for the training (top) and test (bottom) data sets, 
for one recording session.  (b) Classifier results  for the same session as in  (a).  Left:  
Correlation matrix between the training and test sets. Right: Results of the winner-take-
all  algorithm. The red square in each row represents the image from the test set that 
produced the highest correlation with the training set, and is the “guess” of the classifier. 
The percent correct is evaluated as the number of guesses that lie along the diagonal (the 
same image in the training and test sets produces the highest correlation). (c) Results for a 
second session, in the same format as (b).

We  evaluate  classifier  performance  with  a  winner-take-all  criterion,  which  is  more 
conservative  than  the  criterion  in  [1].  First,  a  correlation  matrix  R is  constructed 
containing correlation coefficients for each pairwise comparison of rows in  Atraining and 
Atest (shown on the left in Figure 3b and 3c for two data sets). The element Ri,j represents 
the correlation coefficient between row i of Atest  and row j of Atraining. Then, for each row 
in the  correlation matrix,  the  classifier  “guesses” the  identity  of  the test  stimulus  by 
selecting the element with the highest coefficient (shown on the right in Figure 3b and 
3c). Correct guesses lie along the diagonal of this matrix, Ri,i. 

The previously-used method evaluated classifier performance by successively pairing off 
the correct stimulus with incorrect stimuli from the training set [1]. With this criterion, 
responses from the test set which do not correlate maximally with the same stimulus in 
the training set might still lead to high classifier performance. For instance, if an element 
Ri,i   is larger than all but one coefficient in row  i, pairwise comparisons would reveal 
correct guesses for 10 out of 11 comparisons, or 91% correct, while the winner-take-all 
criterion would consider this 0%. This conservative criterion reduces chance performance 
from 1/2 to 1/12, and ensures that high classifier performance reflects a high level of 
discriminability between different stimuli, providing a stringent test for decoding.

4 Identifying voxels which distinguish objects
When we examined response patterns  across all  object-selective voxels,  we observed 
high levels of classifier performance from some recording sessions, as shown in Session 
A in Figure 3. Many sessions, however, were more similar to Session B: limited success 
at decoding object identity when using all voxels. 
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For both cases, a relevant question is the extent to which information is contained within 
a subset of the selected voxel. The distributed representation implied in Session A may be 
driven  by  only  a  few informative  voxels;  conversely,  excessively  noisy  or  unrelated 
activity from other voxels may be affected classifier performance on Session B. This is of 
particular  concern  given  that  the  functional  organization  of  this  cortex  is  not  well 
understood. In addition to using such classifiers to test a hypothesis that a pre-defined 
region of interest can discriminate stimuli, it would be highly useful to use the classifier 
to identify cortical regions which represent a stimulus. 

To  identify  subsets  of  the  data  which  reliably  represent  different  stimuli,  we search 
among  the  set  of  object-selective  voxels  using  two  metrics  to  rank  voxels:  (1)  The 
reliability of each voxel between the training and test data subsets; and (2) The mutual 
information of each voxel with the stimulus set. 

4.1 Voxel reliability metric

The voxel  reliability  metric  is  computed for  each  voxel  by taking  the  vectors  of  12 
response amplitudes to each stimulus in the training and test sets, and calculating their 
correlation coefficient. Voxels with high reliability will have high values for the diagonal 
elements in the R correlation matrix, but this does not place constraints on correlations 
for the off-diagonal comparisons. For instance, persistently active and nonspecific voxels 
(such  as  might  be  expected  from draining  veins  or  sinuses)  would  have  high  voxel 
reliability, but also high correlation for all pairwise comparisons between stimuli in test 
and training sets, so as not to guarantee high classifier performance. 

4.2 Mutual information metric

The mutual information for a voxel is computed as the difference between the overall 
entropy of the voxel and the “noise entropy”, the sum over all stimuli of the entropy of 
the voxel given each stimulus [6]:

I m=H−H noise=−∑
r

P  r log 2 P  r ∑
s ,r

P  s P r∣s log2 P r∣s 1

In this formula, P(r) represents the probability of observing a response level r and P(r|s) 
represents the probability of  observing response r  given stimulus s.  Computing these 
probabilities presents a difficulty for fMRI data, since an accurate estimate requires many 
trials. Given the hemodynamic lag of 9-16 sec inherent to measuring BOLD signal, and 
the limitations of keeping a human observer in an MRI scanner before motion artifacts or 
attentional drifts confound the signals, it is difficult to obtain many trials over which to 
evaluate different response probabilities. There are two possible solutions to this: find 
ways of obtaining large number of trials, e. g. through co-registering data across many 
sessions; and reduce the number of possible response bins for the data. While the first 
option is an area of active pursuit for us, we will focus here on the second approach. 

Given the low number of trials per image, we reduce the number of possible response 
levels to only two bins, 0 and 1. This allows for a wider range of possible values for P(r) 
and P(r|s) at the expense of ignoring potential information contained in varying response 
levels. Given these two bins, the next question is deciding how to threshold responses to 
decide if a given voxel responded significantly (r=1) or not (r=0) on a given trial. Since 
we do not have an  a priori hypothesis about the value of this threshold, we choose it 
separately for each voxel, such that it maximizes the mutual information of that voxel. 
This  approach  has  been  used  previously  to  reduce  free  parameters  while  developing 
artificial recognition models[7]. 



Figure 4: Comparison of metrics for identifying reliable subsets of voxels in data sets. (a) 
Performance  on  winner-take-all  classifier  of  different-sized  subsets  of  one  data  set 
(“Session B” in Figure 3), sorted by voxel reliability (gray, solid) and mutual information 
(red, dashed) metrics. (b) Performance of the two metrics across 12 data sets. Each curve 
represents  the  mean  (thick  line)  ±  standard  error  of  the  mean  across  data  sets.  (c) 
Performance on data set from  (a) when reverse-sorting voxels by each metric. Dotted 
black line indicates chance performance.

After ranking each voxel with the two metrics, we evaluated how well these voxels found 
reliable  object  representations.  To  do this,  we sorted the  voxels  in  descending order 
according to each metric; selected progressively larger subsets of voxels, starting with the 
10  highest-ranked  voxels  and  proceeding  to  the  full  set  of  voxels;  and  evaluated 
performance on the classifier for each subset. Results of these analyses are summarized in 
Figure 4.  Figure 4a shows performance curves for the two sortings on data from the 
“Session B” data set illustrated in Figure 3. As can be seen, while performance using all 
voxels is at 42% correct, by removing voxels, performance quickly reaches 100% using 
the reliability criterion. The mutual information metric also converges to 100%, albeit 
slightly more slowly. Also note that for very small subset sizes, performance decreases 
again: correct discrimination requires information distributed across a set of voxels.

Finally, we repeated our analyses across 12 data sets collected from 4 subjects. Figure 4c 
shows  the  mean  performance  across  sessions  for  the  two  metrics.  These  curves  are 
normalized by the proportion of total available voxels for each data set. Overall, the voxel 
reliability metric was significantly better at identifying subsets of voxels which could 
discriminate object identity, although both metrics performed significantly better than the 
1/12  chance  performance  at  the  classifier  task,  and  both  produced  pronounced 
improvements in performance for smaller subsets compared to using the entire data sets. 
Note  that  simply removing voxels  does  not  guarantee  the  better  performance  on the 
classifier. If the voxels are sorted in reverse order, starting with e. g. the lowest values of 
voxel reliability or mutual information, subsets containing half the voxels are consistently 
at or below chance performance (Figure 4c). 

5  Summary and conclusions
Developing and training classifiers to identify cognitive states based on fMRI data is a 
growing and promising approach for neuroscience [1-4]. One drawback to these methods, 
however,  is  that  they often require prior  knowledge of  which voxels  are involved in 
specifying a cognitive state, and which aren’t. Given the poorly-understood functional 
organization of the majority of cortex, an important goal is to develop methods to search 
across cortex for regions which represent such states. The results described here represent 
one step in this direction.

Our  voxel-ranking  metrics  successfully  identified  subsets  of  object-selective  voxels 
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which discriminate object identity. This demonstrates the feasibility of adapting classifier 
methods  to  search  across  cortical  regions.  However,  these  methods  can  be  refined 
considerably. The most important improvement is providing a larger set of trials from 
which to compute response probabilities. This is currently being pursued by combining 
data sets  from multiple recording sessions in a reference volume. Given more extensive 
data, the set of possible response bins can be increased from the current binary set, which 
should improve performance of our mutual information metric. 

Our results also have several implications for object recognition. We found a high ability 
to discriminate between individual images in our data sets. Moreover, this discrimination 
could  be  performed with  sets  of  voxels  of  widely  varying  sizes.  For  some sessions, 
perfect discrimination could be achieved using all object-selective voxels, which number 
in the thousands (Figure 3a, 3b); for many others, perfect discrimination was possible 
using subsets as small as a few dozen voxels. This has implications for the distributed 
nature of object representation in extrastriate cortex. However, it raises the question of 
identifying  redundant  information  within  these  representations.  The  distributed 
representations  may  reflect  functionally  distinct  areas  which  are  processing  different 
aspects of each stimulus, as in earlier visual cortex. Mutual information approaches have 
succeeded at identifying redundant coding of information in other sensory areas [10], and 
can be tested on the known functional subdivisions in early visual cortex. In this way, we 
can use intuitions generated by ideal observers of the data, such as the classifier described 
here,and apply them to understanding how the brain processes this information.
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