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Abstract
The area under the ROC curve (AUC) has been advocated as an evalu-
ation criterion for the bipartite ranking problem. We study large devi-
ation properties of the AUC; in particular, we derive a distribution-free
large deviation bound for the AUC which serves to bound the expected
accuracy of a ranking function in terms of its empirical AUC on an inde-
pendent test sequence. A comparison of our result with a corresponding
large deviation result for the classification error rate suggests that the test
sample size required to obtain anε-accurate estimate of the expected ac-
curacy of a ranking function withδ-confidence is larger than that required
to obtain anε-accurate estimate of the expected error rate of a classifi-
cation function with the same confidence. A simple application of the
union bound allows the large deviation bound to be extended to learned
ranking functions chosen from finite function classes.

1 Introduction
In many learning problems, the goal is not simply to classify objects into one of a fixed
number of classes; instead, arankingof objects is desired. This is the case, for example, in
information retrieval problems, where one is interested in retrieving documents from some
database that are ‘relevant’ to a given query or topic. In such problems, one wants to return
to the user a list of documents that contains relevant documents at the top and irrelevant
documents at the bottom; in other words, one wants a ranking of the documents such that
relevant documents are ranked higher than irrelevant documents.

The problem of ranking has been studied from a learning perspective under a variety of
settings [2, 8, 4, 7]. Here we consider the setting in which objects come from two cate-
gories, positive and negative; the learner is given examples of objects labeled as positive
or negative, and the goal is to learn a ranking in which positive objects are ranked higher
than negative ones. This captures, for example, the information retrieval problem described
above; in this case, the training examples consist of documents labeled as relevant (posi-
tive) or irrelevant (negative). This form of ranking problem corresponds to the ‘bipartite
feedback’ case of [7]; for this reason, we refer to it as thebipartite ranking problem.

Formally, the setting of the bipartite ranking problem is similar to that of the binary clas-
sification problem. In both problems, there is an instance spaceX and a set of two
class labelsY = {−1,+1}. One is given a finite sequence of labeled training examples
S = ((x1, y1), . . . , (xM , yM )) ∈ (X × Y)M , and the goal is to learn a function based on
this training sequence. However, the form of the function to be learned in the two problems



is different. In classification, one seeks a binary-valued functionh : X→Y that predicts
the class of a new instance inX . On the other hand, in ranking, one seeks areal-valued
functionf : X → R that induces a ranking overX ; an instance that is assigned a higher
value byf is ranked higher than one that is assigned a lower value byf .

Thearea under the ROC curve(AUC) has recently gained some attention as an evaluation
criterion for the bipartite ranking [3]. Given a ranking functionf : X→R and a finite
data sequenceT = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N containingm positive andn
negative examples, the AUC off with respect toT , denotedÂ(f ;T ), can be expressed as
the following Wilcoxon-Mann-Whitney statistic [3]:

Â(f ;T ) =
1

mn

∑
{i:yi=+1}

∑
{j:yj=−1}

(
I{f(xi)>f(xj)} +

1
2
I{f(xi)=f(xj)}

)
, (1)

whereI{·} denotes the indicator variable whose value is one if its argument is true and
zero otherwise. The AUC off with respect toT is thus simply the fraction of positive-
negative pairs inT that are ranked correctly byf , assuming that ties are broken uniformly
at random.1

The AUC is an empirical quantity that evaluates a ranking function with respect to a partic-
ular data sequence. What does the empirical AUC tell us about the expected performance
of a ranking function on future examples? This is the question we consider. The question
has two parts, both of which are important for machine learning practice. First, what can be
said about the expected performance of a ranking function based on its empirical AUC on
an independent test sequence? Second, what can be said about the expected performance of
a learned ranking function based on its empirical AUC on the training sequence from which
it is learned? We address the first question in this paper; the second question is addressed
in [1].

We start by defining the expected ranking accuracy of a ranking function (analogous to
the expected error rate of a classification function) in Section 2. Section 3 contains our
large deviation result, which serves to bound the expected accuracy of a ranking function
in terms of its empirical AUC on an independent test sequence. Our conceptual approach
in deriving the large deviation result for the AUC is similar to that of [9], in which large
deviation properties of the average precision were considered. Section 4 compares our
bound to a corresponding large deviation bound for the classification error rate. A simple
application of the union bound allows the large deviation bound to be extended to learned
ranking functions chosen from finite function classes; this is described in Section 5.

2 Expected Ranking Accuracy
We begin by introducing some notation. As in classification, we shall assume that all
examples are drawn randomly and independently according to some (unknown) underly-
ing distributionD overX × Y. The notationD+1 andD−1 will be used to denote the
class-conditional distributionsDX|Y =+1 andDX|Y =−1, respectively. We shall find it con-
venient to decompose a data sequenceT = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N into
two components,TX = (x1, . . . ,xN ) ∈ XN andTY = (y1, . . . , yN ) ∈ YN . Several
of our results will involve the conditional distributionDTX |TY =y for some label sequence

y = (y1, . . . , yN ) ∈ YN ; this distribution is simplyDy1 × . . . × DyN
.2 As a final note of

1In [3], a slightly simpler form of the Wilcoxon-Mann-Whitney statistic is used, which does not
account for ties.

2Note that, since the AUC of a ranking functionf with respect to a data sequenceT ∈ (X ×Y)N

is independent of the ordering of examples in the sequence, our results involving the conditional
distributionDTX |TY =y for some label sequencey = (y1, . . . , yN ) ∈ YN depend only on the number
m of positive labels iny and the numbern of negative labels iny. We state our results in terms of
thedistributionDTX |TY =y ≡ Dy1 × . . .×DyN only because this is more general thanDm

+1×Dn
−1.



convention, we useT ∈ (X ×Y)N to denote a general data sequence (e.g., an independent
test sequence), andS ∈ (X × Y)M to denote a training sequence.

Definition 1 (Expected ranking accuracy).Let f : X→R be a ranking function onX .
Define theexpected ranking accuracy(or simplyranking accuracy) off , denoted byA(f),
as follows:

A(f) = EX∼D+1,X′∼D−1

{
I{f(X)>f(X′)} +

1
2
I{f(X)=f(X′)}

}
.

Theranking accuracyA(f) defined above is simply the probability that an instance drawn
randomly according toD+1 will be ranked higher byf than an instance drawn randomly
according toD−1, assuming that ties are broken uniformly at random. The following sim-
ple lemma shows that the empirical AUC of a ranking functionf is an unbiased estimator
of the expected ranking accuracy off :

Lemma 1. Letf : X→R be a ranking function onX , and lety = (y1, . . . , yN ) ∈ YN be
any finite label sequence. Then

ETX |TY =y

{
Â(f ;T )

}
= A(f) .

Proof. Let m be the number of positive labels iny, andn thenumber of negative labels in
y. Then from the definition of the AUC (Eq. (1)) and linearity of expectation, we have

ETX |TY =y

{
Â(f ;T )

}
=

1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

EXi∼D+1,Xj∼D−1

{
I{f(Xi)>f(Xj)} +

1
2
I{f(Xi)=f(Xj)}

}
=

1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

A(f)

= A(f) . ut

3 Large Deviation Bound
We are interested in bounding the probability that the empirical AUC of a ranking function
f with respect to a (random) test sequenceT will have a large deviation from its expected
ranking accuracy. In other words, we are interested in bounding probabilities of the form

P
{∣∣∣Â(f ;T )−A(f)

∣∣∣ ≥ ε
}

for givenε > 0. Our main tool in deriving such a large deviation bound will be the follow-
ing powerful concentration inequality of McDiarmid [10], which bounds the deviation of
any function of a sample for which a single change in the sample has limited effect:

Theorem 1 (McDiarmid, 1989).LetX1, . . . , XN be independent random variables with
Xk taking values in a setAk for eachk. Letφ : (A1 × · · · ×AN )→R be such that

sup
xi∈Ai,x′k∈Ak

|φ(x1, . . . , xN )− φ(x1, . . . , xk−1, x
′
k, xk+1, . . . , xN )| ≤ ck .

Then for anyε > 0,

P {|φ(X1, . . . , XN )−E{φ(X1, . . . , XN )}| ≥ ε} ≤ 2e−2ε2/
∑N

k=1 c2
k .

Note that whenX1, . . . , XN are independent bounded random variables withXk ∈ [ak, bk]
with probability one andφ(X1, . . . , XN ) =

∑N
k=1 Xk, McDiarmid’s inequality (withck =

bk − ak) reduces to Hoeffding’s inequality. Next we define the following quantity which
appears in several of our results:



Definition 2 (Positive skew).Let y = (y1, . . . , yN ) ∈ YN be a finite label sequence of
lengthN ∈ N. Define thepositive skewof y, denoted byρ(y), as follows:

ρ(y) =
1
N

∑
{i:yi=+1}

1 .

Thefollowing can be viewed as the main result of this paper. We note that our results are
all distribution-free, in the sense that they hold for any distributionD overX × Y.

Theorem 2. Let f : X→R be a fixed ranking function onX and lety = (y1, . . . , yN ) ∈
YN be any label sequence of lengthN ∈ N. Then for anyε > 0,

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥ ε

}
≤ 2e−2ρ(y)(1−ρ(y))Nε2 .

Proof. Let m be the number of positive labels iny, andn thenumber of negative labels in
y. We can viewTX = (X1, . . . , XN ) ∈ XN as a random vector; given the label sequence
y, the random variablesX1, . . . , XN are independent, with eachXk taking values inX .
Now, defineφ : XN→R as follows:

φ (x1, . . . ,xN ) = Â (f ; ((x1, y1), . . . , (xN , yN ))) .

Then, for eachk such thatyk = +1, we have the following for allxi,x′k ∈ X :∣∣φ(x1, . . . ,xN )− φ(x1, . . . ,xk−1,x′k,xk+1 . . . ,xN )
∣∣

=
1

mn

∣∣∣∣∣ ∑
{j:yj=−1}

((
I{f(xk)>f(xj)} +

1
2
I{f(xk)=f(xj)}

)
−

(
I{f(x′k)>f(xj)} +

1
2
I{f(x′k)=f(xj)}

))∣∣∣∣∣
≤ 1

mn
n

=
1
m

.

Similarly, for eachk such thatyk = −1, one can show for allxi,x′k ∈ X :∣∣φ(x1, . . . ,xN )− φ(x1, . . . ,xk−1,x′k,xk+1 . . . ,xN )
∣∣ ≤ 1

n
.

Thus,takingck = 1/m for k such thatyk = +1 andck = 1/n for k such thatyk = −1,
and applying McDiarmid’s theorem, we get for anyε > 0,

PTX |TY =y

{∣∣∣Â(f ;T )−ETX |TY =y

{
Â(f ;T )

}∣∣∣ ≥ ε
}

≤ 2e−2ε2/(m( 1
m )2+n( 1

n )2) . (2)

Now, from Lemma 1,

ETX |TY =y

{
Â(f ;T )

}
= A(f) .

Also, we have

1
m( 1

m )2 + n( 1
n )2

=
1

1
m + 1

n

=
mn

m + n
= ρ(y)(1− ρ(y))N .

Substituting the above in Eq. (2) gives the desired result. ut



We note that the result of Theorem 2 can be strengthened so that the conditioning is only
onthe numbersm andn of positive and negative labels, and not on the specific label vector
y.3 FromTheorem 2, we can derive a confidence interval interpretation of the bound that
gives, for any0 < δ ≤ 1, a confidence interval based on the empirical AUC of a ranking
function (on a random test sequence) which is likely to contain the true ranking accuracy
with probability at least1− δ. More specifically, we have:

Corollary 1. Let f : X→R be a fixed ranking function onX and lety = (y1, . . . , yN ) ∈
YN be any label sequence of lengthN ∈ N. Then for any0 < δ ≤ 1,

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥√ ln

(
2
δ

)
2ρ(y)(1− ρ(y))N

}
≤ δ .

Proof. This follows directly from Theorem 2 by setting2e−2ρ(y)(1−ρ(y))Nε2 = δ and solv-
ing for ε. ut

Theorem 2 also allows us to obtain an expression for a test sample size that is sufficient to
obtain, for0 < ε, δ ≤ 1, anε-accurate estimate of the ranking accuracy withδ-confidence:

Corollary 2. Let f : X→R be a fixed ranking function onX and let0 < ε, δ ≤ 1. Let
y = (y1, . . . , yN ) ∈ YN be any label sequence of lengthN ∈ N. If

N ≥
ln
(

2
δ

)
2ρ(y)(1− ρ(y))ε2

,

then
PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥ ε

}
≤ δ .

Proof. This follows directly from Theorem 2 by setting2e−2ρ(y)(1−ρ(y))Nε2 ≤ δ and solv-
ing for N . ut

Figure 1 illustrates the dependence of the above expression for the sufficient test sample
size on the the accuracy parameterε and positive skewρ(y) for different values ofδ.

The confidence interval of Corollary 1 can in fact be generalized to remove the conditioning
on the label vector completely:

Theorem 3. Letf : X→R be a fixed ranking function onX and letN ∈ N. Then for any
0 < δ ≤ 1,

PT∼DN

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥

√
ln
(

2
δ

)
2ρ(TY )(1− ρ(TY ))N

}
≤ δ .

Proof. ForT ∈ (X × Y)N and0 < δ ≤ 1, define the proposition

Φ(T, δ) ≡

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥

√
ln
(

2
δ

)
2ρ(TY )(1− ρ(TY ))N

}
.

Thenfor any0 < δ ≤ 1, we have
PT {Φ(T, δ)} = ET

{
IΦ(T,δ)

}
= ETY

{
ETX |TY =y

{
IΦ(T,δ)

}}
= ETY

{
PTX |TY =y {Φ(T, δ)}

}
≤ ETY

{δ} (by Corollary 1)
= δ . ut

3Our thanks to an anonymous reviewer for pointing this out.



Figure 1:Thetest sample sizeN (based on Corollary 2) sufficient to obtain anε-accurate estimate
of the ranking accuracy withδ-confidence, for various values of the positive skewρ ≡ ρ(y) for some
label sequencey, for (left) δ = 0.01 and (right)δ = 0.001.

Note that the above ‘trick’ works only once we have gone to a confidence interval; an
attempt to generalize the bound of Theorem 2 in a similar way gives an expression in which
the final expectation is not easy to evaluate. Interestingly, the above proof does not even
require a factorized distributionDTY

since it is built on a result for any fixed label sequence
y. We note that the above technique could also be applied to generalize the results of [9] in
asimilar manner.

4 Comparison with Large Deviation Bound for Error Rate
Our use of McDiarmid’s inequality in deriving the large deviation bound for the AUC of
a ranking function is analogous to the use of Hoeffding’s inequality in deriving a large
deviation bound for the error rate of a classification function. (e.g., see [6, Chapter 8]). The
need for the more general inequality of McDiarmid in our derivations arises from the fact
that the empirical AUC, unlike the empirical error rate, cannot be expressed as a sum of
independent random variables.

Given a classification functionh : X→Y, let L(h) denote the expected error rate ofh:

L(h) = EXY ∼D
{
I{h(X) 6=Y }

}
.

Similarly, given a classification functionh : X→Y and a finite data sequenceT =
((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N , let L̂(h;T ) denote the empirical error rate ofh
with respect toT :

L̂(h;T ) =
1
N

N∑
i=1

I{h(xi)6=yi} .

Thenthe large deviation bound obtained via Hoeffding’s inequality for the classification
error rate states that for a fixed classification functionh : X→Y and for anyN ∈ N, ε > 0,

PT∼DN

{∣∣∣L̂(h;T )− L(h)
∣∣∣ ≥ ε

}
≤ 2e−2Nε2 . (3)

Comparing Eq. (3) to the bound of Theorem 2, we see that the AUC bound differs from the
error rate bound by a factor ofρ(y)(1 − ρ(y)) in the exponent. This difference translates
into a 1/(ρ(y)(1 − ρ(y))) factor difference in the resulting sample size bounds: given
0 < ε, δ ≤ 1, the test sample size sufficient to obtain anε-accurate estimate of the expected
accuracy of a ranking function withδ-confidence is1/(ρ(y)(1−ρ(y))) timeslarger than the
corresponding test sample size sufficient to obtain anε-accurate estimate of the expected
error rate of a classification function with the same confidence. Forρ(y) = 1/2, this means
a sample size larger by a factor of4; as the positive skewρ(y) departsfrom 1/2, the factor
grows larger (see Figure 2).



Figure 2: The test sample size bound for the AUC, for positive skewρ ≡ ρ(y) for some label
sequencey, is larger than the corresponding test sample size bound for the classification error rate by
a factor of1/(ρ(1− ρ)).

5 Bound for Learned Ranking Functions Chosen from Finite Classes
The large deviation result of Theorem 2 bounds the expected accuracy of a ranking function
in terms of its empirical AUC on an independent test sequence. A simple application of the
union bound allows the result to be extended to bound the expected accuracy of a learned
ranking function in terms of its empirical AUC on the training sequence from which it is
learned, in the case when the learned ranking function is chosen from a finite function class.
More specifically, we have:

Theorem 4. LetF be a finite class of real-valued functions onX and letfS ∈ F denote
the ranking function chosen by a learning algorithm based on the training sequenceS. Let
y = (y1, . . . , yM ) ∈ YM be any label sequence of lengthM ∈ N. Then for anyε > 0,

PSX |SY =y

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥ ε

}
≤ 2|F|e−2ρ(y)(1−ρ(y))Mε2 .

Proof. For anyε > 0, we have

PSX |SY =y

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥ ε

}
≤ PSX |SY =y

{
max
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε

}
≤

∑
f∈F

PSX |SY =y

{∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε

}
(by the union bound)

≤ 2|F|e−2ρ(y)(1−ρ(y))Mε2 (by Theorem 2). ut

As before, we can derive from Theorem 4 expressions for confidence intervals and suffi-
cient training sample size. We give these here without proof:

Corollary 3. Under the assumptions of Theorem 4, for any0 < δ ≤ 1,

PSX |SY =y

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥√ ln |F|+ ln

(
2
δ

)
2ρ(y)(1− ρ(y))M

}
≤ δ .

Corollary 4. Under the assumptions of Theorem 4, for any0 < ε, δ ≤ 1, if

M ≥ 1
2ρ(y)(1− ρ(y))ε2

(
ln |F|+ ln

(
2
δ

))
,



then

PSX |SY =y

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥ ε

}
≤ δ .

Theorem 5. LetF be a finite class of real-valued functions onX and letfS ∈ F denote
the ranking function chosen by a learning algorithm based on the training sequenceS. Let
M ∈ N. Then for any0 < δ ≤ 1,

PS∼DM

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥

√
ln |F|+ ln

(
2
δ

)
2ρ(SY )(1− ρ(SY ))M

}
≤ δ .

6 Conclusion
We have derived a distribution-free large deviation bound for the area under the ROC curve
(AUC), a quantity used as an evaluation criterion for the bipartite ranking problem. Our re-
sult parallels the classical large deviation result for the classification error rate obtained via
Hoeffding’s inequality. Since the AUC cannot be expressed as a sum of independent ran-
dom variables, a more powerful inequality of McDiarmid was required. A comparison with
the corresponding large deviation result for the error rate suggests that, in the distribution-
free setting, the test sample size required to obtain anε-accurate estimate of the expected
accuracy of a ranking function withδ-confidence is larger than the test sample size required
to obtain a similar estimate of the expected error rate of a classification function. A simple
application of the union bound allows the large deviation bound to be extended to learned
ranking functions chosen from finite function classes.

A possible route for deriving an alternative large deviation bound for the AUC could be
via the theory of U-statistics; the AUC can be expressed as a two-sample U-statistic, and
therefore it may be possible to apply specialized results from U-statistic theory (see, for
example, [5]) to the AUC.
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