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Abstract

We describe semi-Markov conditional random fields (semi-CRFs), a con-
ditionally trained version of semi-Markov chains. Intuitively, a semi-
CRF on an input sequencex outputs a “segmentation” ofx, in which
labels are assigned to segments (i.e., subsequences) ofx rather than to
individual elementsxi of x. Importantly, features for semi-CRFs can
measure properties of segments, and transitions within a segment can
be non-Markovian. In spite of this additional power, exact learning and
inference algorithms for semi-CRFs are polynomial-time—often only a
small constant factor slower than conventional CRFs. In experiments
on five named entity recognition problems, semi-CRFs generally outper-
form conventional CRFs.

1 Introduction

Conditional random fields (CRFs) are a recently-introduced formalism [12] for represent-
ing a conditional modelPr(y|x), where bothx andy have non-trivial structure (often
sequential). Here we introduce a generalization of sequential CRFs calledsemi-Markov
conditional random fields(or semi-CRFs). Recall thatsemi-Markov chain modelsextend
hidden Markov models (HMMs) by allowing each statesi to persist for a non-unit length of
time di. After this time has elapsed, the system will transition to a new states′, which de-
pends only onsi; however, during the “segment” of time betweeni andi+di, the behavior
of the system may be non-Markovian. Generative semi-Markov models are fairly common
in certain applications of statistics [8, 9], and are also used in reinforcement learning to
model hierarchical Markov decision processes [19].

Semi-CRFs are a conditionally trained version of semi-Markov chains. In this paper, we
present inference and learning methods for semi-CRFs. We also argue that segments often
have a clear intuitive meaning, and hence semi-CRFs are more natural than conventional
CRFs. We focus here on named entity recognition (NER), in which a segment corresponds
to an extracted entity; however, similar arguments might be made for several other tasks,
such as gene-finding [11] or NP-chunking [16].

In NER, a semi-Markov formulation allows one to easily construct entity-level features
(such as “entity length” and “similarity to other known entities”) which cannot be easily
encoded in CRFs. Experiments on five different NER problems show that semi-CRFs often
outperform conventional CRFs.



2 CRFs and Semi-CRFs

2.1 Definitions

A CRF modelsPr(y|x) using a Markov random field, with nodes corresponding to ele-
ments of the structured objecty, and potential functions that are conditional on (features
of) x. Learning is performed by setting parameters to maximize the likelihood of a set of
(x,y) pairs given as training data. One common use of CRFs is for sequential learning
problems like NP chunking [16], POS tagging [12], and NER [15]. For these problems
the Markov field is a chain, andy is a linear sequence of labels from a fixed setY. For in-
stance, in the NER application,x might be a sequence of words, andy might be a sequence
in {I,O}|x|, whereyi = I indicates “wordxi is inside a name” andyi = O indicates the
opposite.

Assume a vectorf of local feature functionsf = 〈f1, . . . , fK〉, each of which maps a pair
(x,y) and an indexi to a measurementfk(i,x,y) ∈ R. Let f(i,x,y) be the vector of these
measurements, and letF(x,y) =

∑|x|
i f(i,x,y). For example, in NER, the components

of f might include the measurementf13(i,x,y) = [[xi is capitalized]] · [[yi = I]], where
the indicator function[[c]] = 1 if c if true and zero otherwise; this implies thatF 13(x,y)
would be the number of capitalized wordsxi paired with the labelI. Following previous
work [12, 16] we will define a conditional random field (CRF) to be an estimator of the
form

Pr(y|x,W) =
1

Z(x)
eW·F(x,y) (1)

whereW is a weight vector over the components ofF, andZ(x) =
∑

y′ eW·F(x,y′).

To extend this to the semi-Markov case, lets = 〈s1, . . . , sp〉 denote asegmentationof x,
wheresegmentsj = 〈tj , uj , yj〉 consists of astart positiontj , anend positionuj , and a
label yj ∈ Y . Conceptually, a segment means that the tagyj is given to allxi’s between
i = tj andi = uj , inclusive. We assume segments have positive length, and completely
cover the sequence1 . . . |x| without overlapping: that is, thattj and uj always satisfy
t1 = 1, up = |x|, 1 ≤ tj ≤ uj ≤ |x|, andtj+1 = uj + 1. For NER, a valid segmentation
of the sentence “I went skiing with Fernando Pereira in British Columbia” might bes =
〈(1, 1, O), (2, 2, O), (3, 3, O), (4, 4, O), (5, 6, I), (7, 7, O), (8, 9, I)〉, corresponding to the
label sequencey = 〈O,O,O,O, I, I, O, I, I〉.

We now assume a vectorg of segment feature functionsg = 〈g1, . . . , gK〉, each of
which maps a triple(j,x, s) to a measurementgk(j,x, s) ∈ R, and defineG(x, s) =
∑|s|

j g(j,x, s). We also make a restriction on the features, analogous to the usual Marko-
vian assumption made in CRFs, and assume that every componentgk of g is a function
only of x, sj , and the labelyj−1 associated with the preceding segmentsj−1. In other
words, we assume that everygk(j,x, s) can be rewritten as

gk(j,x, s) = g′k(yj , yj−1,x, tj , uj) (2)

for an appropriately definedg′k. In the rest of the paper, we will drop theg′ notation and
useg for both versions of the segment-level feature functions. Asemi-CRFis then an
estimator of the form

Pr(s|x,W) =
1

Z(x)
eW·G(x,s) (3)

where againW is a weight vector forG andZ(x) =
∑

s′ eW·G(x,s′).

2.2 An efficient inference algorithm

The inference problemfor a semi-CRF is defined as follows: givenW andx, find the
best segmentation,argmax s Pr(s|x,W), wherePr(s|x,W) is defined by Equation 3. An



efficient inference algorithm is suggested by Equation 2, which implies that

argmax s Pr(s|x,W) = argmax sW · G(x, s) = argmax sW ·
∑

j

g(yj , yj−1,x, tj , uj)

Let L be an upper bound on segment length. Letsi:y denote the set of all partial segmen-
tations starting from 1 (the first index of the sequence) toi, such that the last segment has
the labely and ending positioni. LetVx,g,W (i, y) denote the largest value ofW ·G(x, s′)
for anys′ ∈ si:y. Omitting the subscripts, the following recursive calculation implements
a semi-Markov analog of the usual Viterbi algorithm:

V (i, y) =

{

maxy′,d=1...L V (i − d, y′) + W · g(y, y′,x, i − d + 1, i) if i > 0
0 if i = 0
−∞ if i < 0

(4)

The best segmentation then corresponds to the path traced bymaxy V (|x|, y).

2.3 Semi-Markov CRFsvsorder-L CRFs

Since conventional CRFs need not maximize over possible segment lengthsd, inference
for semi-CRFs is more expensive. However, Equation 4 shows that the additional cost is
only linear inL. For NER, a reasonable value ofL might be four or five.1 Since in the
worst caseL ≤ |x|, the semi-Markov Viterbi algorithm is always polynomial, even when
L is unbounded.

For fixedL, it can be shown that semi-CRFs are no more expressive than order-LCRFs.
For order-LCRFs, however the additional computational cost is exponential inL. The
difference is that semi-CRFs only consider sequences in which thesamelabel is assigned
to all L positions, rather than all|Y|L length-Lsequences. This is a useful restriction, as it
leads to faster inference.

Semi-CRFs are also a natural restriction, as it is often convenient to express features in
terms of segments. As an example, letdj denote the length of a segment, and letµ
be the average length of all segments with labelI. Now consider the segment feature
gk1(j,x, s) = (dj − µ)2 · [[yj = I]]. After training, the contribution of this feature toward
Pr(s|x) associated with a length-dentity will be proportional toewk·(d−µ)2—i.e., it allows
the learner to model a Gaussian distribution of entity lengths.

An exponential model for lengths could be implemented with the featuregk2(j,x,y) =
dj · [[yj = I]]. In contrast to the Gaussian-length feature above,gk2 is “equivalent to” a
local feature functionf(i,x,y) = [[yi = I]], in the following sense: for every triplex,y, s,
wherey is the tags fors,

∑

j gk2(j,x, s) =
∑

i f(i, s,y). Thus a semi-CRF model based
on the single featuregk2 could also be represented by a conventional CRF.

In general, a semi-CRF model can be factorized in terms of an equivalent order-1 CRF
model if and only if the sum of the segment features can be rewritten as a sum of local
features. Thus the degree to which semi-CRFs are non-Markovian depends on the feature
set.

2.4 Learning algorithm

During training the goal is to maximize log-likelihood over a given training setT =
{(x`, s`)}

N
`=1. Following the notation of Sha and Pereira [16], we express the log-

likelihood over the training sequences as

L(W) =
∑

`

log Pr(s`|x`,W) =
∑

`

(W · G(x`, s`) − log ZW(x`)) (5)

1Assuming that non-entity words are placed in unit-length segments, as we do below.



We wish to find aW that maximizesL(W). Equation 5 is convex, and can thus be maxi-
mized by gradient ascent, or one of many related methods. (In our implementation we use
a limited-memory quasi-Newton method [13, 14].) The gradient ofL(W) is the following:

∇L(W) =
∑

`

G(x`, s`) −

∑

s′ G(s′,x`)e
W·G(x`,s′)

ZW(x`)
(6)

=
∑

`

G(x`, s`) − EPr(s′|W)G(x`, s
′) (7)

The first set of terms are easy to compute. However, to compute the the normal-
izer, ZW(x`), and the expected value of the features under the current weight vector,
EPr(s′|W)G(x`, s

′), we must use the Markov property ofG to construct a dynamic pro-
gramming algorithm, similar for forward-backward. We thus defineα(i, y) as the value of
∑

s′∈si:y
eW·G(s′,x) where againsi:y denotes all segmentations from 1 toi ending ati and

labeledy. For i > 0, this can be expressed recursively as

α(i, y) =
L

∑

d=1

∑

y′∈Y

α(i − d, y′)eW·g(y,y′,x,i−d+1,i)

with the base cases defined asα(0, y) = 1 andα(i, y) = 0 for i < 0. The value ofZW(x)
can then be written asZW(x) =

∑

y α(|x|, y).

A similar approach can be used to compute the expectation
∑

s′ G(x`, s
′)eW·G(x`,s′).

For the k-th component of G, let ηk(i, y) be the value of the sum
∑

s′∈si:y
Gk(s′,x`)e

W·G(x`,s′), restricted to the part of the segmentation ending at

positioni. The following recursion2 can then be used to computeηk(i, y):

ηk(i, y) =
∑L

d=1

∑

y′∈Y(ηk(i−d, y′) + α(i−d, y′)gk(y, y′,x, i−d + 1, i))eW·g(y,y′,x,i−d+1,i)

Finally we letEPr(s′|W)G
k(s′,x) = 1

ZW(x)

∑

y ηk(|x|, y).

3 Experiments with NER data

3.1 Baseline algorithms and datasets

In our experiments, we trained semi-CRFs to mark entity segments with the labelI, and
put non-entity words into unit-length segments with labelO. We compared this with two
versions of CRFs. The first version, which we call CRF/1, labels words inside and outside
entities withI andO, respectively. The second version, called CRF/4, replaces theI tag
with four tagsB, E, C, andU , which depend on where the word appears in an entity [2].

We compared the algorithms on five NER problems, associated with three different corpora.
TheAddresscorpus contains 4,226 words, and consists of 395 home addresses of students
in a major university in India [1]. We considered extraction of city names and state names
from this corpus. TheJobscorpus contains 73,330 words, and consists of 300 computer-
related job postings [4]. We considered extraction of company names and job titles. The
18,121-wordEmail corpus contains 216 email messages taken from the CSPACE email
corpus [10], which is mail associated with a 14-week, 277-person management game. Here
we considered extraction of person names.

2As in the forward-backward algorithm for chain CRFs [16], space requirements here can be
reduced fromML|Y| to M |Y|, whereM is the length of the sequence, by pre-computing an appro-
priate set ofβ values.



3.2 Features

As features for CRF, we used indicators for specific words at locationi, or locations within
three words ofi. Following previous NER work [7]), we also used indicators for capi-
talization/letter patterns (such as “Aa+” for a capitalized word, or “D” for a single-digit
number).

As features for semi-CRFs, we used the same set of word-level features, as well their
logical extensions to segments. Specifically, we used indicators for the phrase inside a
segment and the capitalization pattern inside a segment, as well as indicators for words
and capitalization patterns in 3-word windows before and after the segment. We also used
indicators for each segment length (d= 1, . . . , L), and combined all word-level features
with indicators for the beginning and end of a segment.

To exploit more of the power of semi-CRFs, we also implemented a number of dictionary-
derived features, each of which was based on different dictionaryD and similarity function
sim. Letting xsj

denote the subsequence〈xtj
. . . xuj

〉, a dictionary feature is defined as
gD,sim(j,x, s) = argmaxu∈Dsim(xsj

, u)—i.e., the distance from the word sequencexsj

to the closest element inD.

For each of the extraction problems, we assembled oneexternal dictionaryof strings, which
were similar (but not identical) to the entity names in the documents. For instance, for
city names in theAddress data, we used a web page listing cities in India. Due to vari-
ations in the way entity names are written, rote matching these dictionaries to the data
gives relatively low F1 values, ranging from 22% (for the job-title extraction task) to 57%
(for the person-name task). We used three different similarity metrics (Jaccard, TFIDF,
and JaroWinkler) which are known to work well for name-matching in data integration
tasks [5]. All of the distance metrics are non-Markovian—i.e., the distance-based segment
features cannot be decomposed into sums of local features. More detail on the distance
metrics, feature sets, and datasets above can be found elsewhere [6].

We also extended the semi-CRF algorithm to construct, on the fly, aninternal segment
dictionaryof segments labeled as entities in the training data. To make measurements on
training data similar to those on test data, when finding the closest neighbor ofxsj

in the
internal dictionary, we excluded all strings formed fromx, thus excluding matches ofxsj

to
itself (or subsequences of itself). This feature could be viewed as a sort of nearest-neighbor
classifier; in this interpretation the semi-CRF is performing a sort of bi-level stacking [21].

For completeness in the experiments, we also evaluated local versions of the dictionary
features. Specifically, we constructed dictionary features of the formfD,sim(i,x,y) =
argmaxu∈Dsim(xi, u), whereD is either the external dictionary used above, or aninternal
word dictionaryformed from all words contained in entities. As before, words inx were
excluded in finding near neighbors toxi.

3.3 Results and Discussion

We evaluated F1-measure performance3 of CRF/1, CRF/4, and semi-CRFs, with and with-
out internal and external dictionaries. A detailed tabulation of the results are shown in Ta-
ble 1, and Figure 1 shows F1 values plotted against training set size for a subset of three of
the tasks, and four of the learning methods. In each experiment performance was averaged
over seven runs, and evaluation was performed on a hold-out set of 30% of the documents.
In the table the learners are trained with 10% of the available data—as the curves show,
performance differences are often smaller with more training data. Gaussian priors were
used for all algorithms, and for semi-CRFs, a fixed value ofL was chosen for each dataset
based on observed entity lengths. This ranged between 4 and 6 for the different datasets.

In the baseline configuration in which no dictionary features are used, semi-CRFs perform

3F1 is defined as 2*precision*recall/(precision+recall.)
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Figure 1: F1 as a function of training set size. Algorithms marked with “+dict” include external
dictionary features, and algorithms marked with “+int” include internal dictionary features. We do
not use internal dictionary features for CRF/4 since they lead to reduced accuracy.

baseline +internal dict +external dict +both dictionaries
F1 F1 ∆base F1 ∆base F1 ∆base ∆extern

CRF/1
state 20.8 44.5 113.9 69.2 232.7 55.2 165.4 -67.3
title 28.5 3.8 -86.7 38.6 35.4 19.9 -30.2 -65.6
person 67.6 48.0 -29.0 81.4 20.4 64.7 -4.3 -24.7
city 70.3 60.0 -14.7 80.4 14.4 69.8 -0.7 -15.1
company 51.4 16.5 -67.9 55.3 7.6 15.6 -69.6 -77.2
CRF/4
state 15.0 25.4 69.3 46.8 212.0 43.1 187.3 -24.7
title 23.7 7.9 -66.7 36.4 53.6 14.6 -38.4 -92.0
person 70.9 64.5 -9.0 82.5 16.4 74.8 5.5 -10.9
city 73.2 70.6 -3.6 80.8 10.4 76.3 4.2 -6.1
company 54.8 20.6 -62.4 61.2 11.7 25.1 -54.2 -65.9
semi-CRF
state 25.6 35.5 38.7 62.7 144.9 65.2 154.7 9.8
title 33.8 37.5 10.9 41.1 21.5 40.2 18.9 -2.5
person 72.2 74.8 3.6 82.8 14.7 83.7 15.9 1.2
city 75.9 75.3 -0.8 84.0 10.7 83.6 10.1 -0.5
company 60.2 59.7 -0.8 60.9 1.2 60.9 1.2 0.0

Table 1: Comparing various methods on five IE tasks, with and without dictionary features. The
column∆base is percentage change in F1 values relative to the baseline. The column∆extern is is
change relative to using only external-dictionary features.

best on all five of the tasks. When internal dictionary features are used, the performance
of semi-CRFs is often improved, and never degraded by more than 2.5%. However, the
less-natural local version of these features often leads to substantial performance losses for
CRF/1 and CRF/4. Semi-CRFs perform best on nine of the ten task variants for which
internal dictionaries were used. The external-dictionary features are helpful to all the algo-
rithms. Semi-CRFs performs best on three of five tasks in which only external dictionaries
were used.

Overall, semi-CRF performs quite well. If we consider the tasks with and without external
dictionary features as separate “conditions”, then semi-CRFs using all available informa-
tion4 outperform both CRF variants on eight of ten “conditions”.

We also compared semi-CRF to order-LCRFs, with various values ofL.5 In Table 2 we
show the result forL = 1, L = 2, andL = 3, compared to semi-CRF. For these tasks, the
performance of CRF/4 and CRF/1 does not seem to improve much by simply increasing

4I.e., the both-dictionary version when external dictionaries are available, and the internal-
dictionary only version otherwise.

5Order-LCRFs were implemented by replacing the label setY with YL. We limited experiments
to L ≤ 3 for computational reasons.



CRF/1 CRF/4 semi-CRF
L = 1 L = 2 L = 3 L = 1 L = 2 L = 3

AddressState 20.8 20.1 19.2 15.0 16.4 16.4 25.6
AddressCity 70.3 71.0 71.2 73.2 73.9 73.7 75.9
Email persons 67.6 63.7 66.7 70.9 70.7 70.4 72.2

Table 2:F1 values for different order CRFs

order.

4 Related work

Semi-CRFs are similar to nested HMMs [1], which can also be trained discrimini-
tively [17]. The primary difference is that the “inner model” for semi-CRFs is of short,
uniformly-labeled segments with non-Markovian properties, while nested HMMs allow
longer, diversely-labeled, Markovian “segments”.

Discriminative learning methods can be used for conditional random fields with architec-
tures more complex than chains (e.g., [20, 18]), and one of these methods has also been
applied to NER [3]. Further, by creating a random variable for each possible segment, one
can learn models strictly more expressive than the semi-Markov models described here.
However, for these methods, inference is not tractable, and hence approximations must be
made in training and classification. An interesting question for future research is whether
the tractible extension to CRF inference considered here can can be used to improve infer-
ence methods for more expressive models.

In recent prior work [6], we investigated semi-Markov learning methods for NER based
on a voted perceptron training algorithm [7]. The voted perceptron has some advantages
in ease of implementation, and efficiency. (In particular, the voted perceptron algorithm
is more stable numerically, as it does not need to compute a partition function. ) How-
ever, semi-CRFs perform somewhat better, on average, than our perceptron-based learning
algorithm. Probabilistically-grounded approaches like CRFs also are preferable to margin-
based approaches like the voted perceptron in certain settings,e.g., when it is necessary to
estimate confidences in a classification.

5 Concluding Remarks

Semi-CRFs are a tractible extension of CRFs that offer much of the power of higher-order
models without the associated computational cost. A major advantage of semi-CRFs is that
they allow features which measure properties of segments, rather than individual elements.
For applications like NER and gene-finding [11], these features can be quite natural.

Appendix

An implementation of semi-CRFs is available at http://crf.sourceforge.net, and a NER
package using this package is available on http://minorthird.sourceforge.net.
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