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Abstract

We establish learning rates to the Bayes risk for support vector machines
(SVMs) with hinge loss. In particular, for SVMs with Gaussian RBF
kernels we propose a geometric condition for distributions which can be
used to determine approximation properties of these kernels. Finally, we
compare our methods with a recent paper of G. Blanchard et al..

1 Introduction

In recent years support vector machines (SVM’s) have been the subject of many theoretical
considerations. In particular, it was recently shown ([1], [2], and [3]) that SVM’s can learn
for all data-generating distributions. However, these results are purely asymptotic, i.e. no
performance guarantees can be given in terms of the number »n of samples. In this paper
we will establish such guarantees. Since by the no-free-lunch theorem of Devroye (see [4])
performance guarantees are impossible without assumptions on the data-generating distri-
bution we will restrict our considerations to specific classes of distributions. In particular,
we will present a geometric condition which describes how distributions behave close to
the decision boundary. This condition is then used to establish learning rates for SVM’s.
To obtain learning rates faster than »~'/2 we also employ a noise condition of Tsybakov
(see [5]). Combining both concepts we are in particular able to describe distributions such
that SVM’s with Gaussian kernel learn almost linearly, i.e. with rate n=1*¢ for all ¢ > 0,
even though the Bayes classifier cannot be represented by the SVM.

Let us now formally introduce the statistical classification problem. To this end assume that
X isaset. We write Y := {—1,1}. Given atraining set T = ((z1,41),.- -, (®n,yn)) €
(X x Y)™ the classification task is to predict the label y of a new sample (z,y). In the
standard batch model it is assumed that 7" is i.i.d. according to an unknown probability
measure P on X x Y. Furthermore, the new sample (z, y) is drawn from P independently
of T. Given a classifier C that assigns to every training set 7" a measurable function fr :
X — R the prediction of C for y is sign fr(x), where we choose a fixed definition of
sign(0) € {—1,1}. In order to “learn” from the samples of T' the decision function fr
should guarantee a small probability for the misclassification of the example (z,y). To
make this precise the risk of a measurable function f : X — R is defined by

Rp(f) = P({(z,y) : sign f(z) # y}) -

The smallest achievable risk Rp := inf{Rp(f) | f: X — R measurable} is called the
Bayes risk of P. A function fp : X — Y attaining this risk is called a Bayes decision func-
tion. Obviously, a good classifier should produce decision functions whose risks are close



to the Bayes risk. This leads to the definition: a classifier is called universally consistent if
Er~prRp(fr)—Rp — 0 (1)

holds for all probability measures P on X x Y. The next naturally arising question is
whether there are classifiers which guarantee a specific rate of convergence in (1) for all
distributions. Unfortunately, this is impossible by the so-called no-free-lunch theorem of
Devroye (see [4, Thm. 7.2]). However, if one restricts considerations to certain smaller
classes of distributions such rates exist for various classifiers, e.g.:

e Assuming that the conditional probability n(x) := P(1|x) satisfies certain
smoothness assumptions Yang showed in [6] that some plug-in rules (cf. [4])
achieve rates for (1) which are of the form n~“ for some 0 < o < 1/2 depend-
ing on the assumed smoothness. He also showed that these rates are optimal in
the sense that no classifier can obtain faster rates under the proposed smoothness
assumptions.

e Itis well known (see [4, Sec. 18.1]) that using structural risk minimization over a
sequence of hypothesis classes with finite VC-dimension every distribution which
has a Bayes decision function in one of the hypothesis classes can be learned with
rate n = /2.

e Let P be a noise-free distribution, i.e. Rp = 0 and F be a class with finite VC-
dimension. If F contains a Bayes decision function then up to a logarithmic factor
the convergence rate of the ERM classifier over F is n=! (see [4, Sec. 12.7]).

Restricting the class of distributions for classification always raises the question of whether
it is likely that these restrictions are met in real world problems. Of course, in general
this question cannot be answered. However, experience shows that the assumption that the
distribution is noise-free is almost never satisfied. Furthermore, it is rather unrealistic to
assume that a Bayes decision function can be represented by the algorithm. Finally, as-
suming that the conditional probability is smooth, say k-times continuously differentiable,
seems to be unjustifiable for many real world classification problems. We conclude that the
above listed rates are established for situations which are rarely met in practice.

Considering the ERM classifier and hypothesis classes F containing a Bayes decision func-
tion there is a large gap in the rates for noise-free and noisy distributions. In [5] Tsybakov
proposed a condition on the noise which describes intermediate situations. In order to
present this condition we write n(x) := P(y = 1|z), « € X, for the conditional proba-
bility and Px for the marginal distribution of P on X. Now, the noise in the labels can
be described by the function |2 — 1|. Indeed, in regions where this function is close to
1 there is only a small amount of noise, whereas function values close to 0 only occur in
regions with a high noise. We will use the following modified version of Tsybakov’s noise
condition which describes the size of the latter regions:

Definition 1.1 Let 0 < ¢ < oo and P be a distribution on X x Y. We say that P has
Tsybakov noise exponent ¢ if there exists a constant C' > 0 such that for all sufficiently
small ¢ > 0 we have

Px(|2n—1]<t) < C-t2, )

All distributions have at least noise exponent 0. In the other extreme case ¢ = oo the
conditional probability n is bounded away from % In particular this means that noise-free
distributions have exponent ¢ = oo. Finally note, that Tsybakov’s original noise condition
assumed Px (f # fr) < ¢(Rp(f) — Rp)THa forall f : X — Y which is satisfied if
e.g. (2) holds (see [5, Prop. 1]).



In [5] Tsybakov showed that if P has a noise exponent ¢ then ERM-type classifiers can

obtain rates in (1) which are of the form n‘%, where 0 < p < 1 measures the com-
plexity of the hypothesis class. In particular, rates faster than »—1/2 are possible whenever
g > 0and p < 1. Unfortunately, the ERM-classifier he considered is usually hard to imple-
ment and in general there exists no efficient algorithm. Furthermore, his classifier requires
substantial knowledge on how to approximate the Bayes decision rules of the considered
distributions. Of course, such knowledge is rarely present in practice.

2 Results

In this paper we will use the Tsybakov noise exponent to establish rates for SVM’s which
are very similar to the above rates of Tsybakov. We begin by recalling the definition of
SVM’s. To this end let H be a reproducing kernel Hilbert space (RKHS) of a kernel
k: X x X — R, ie H is a Hilbert space consisting of functions from X to R such
that the evaluation functionals are continuous, and k is symmetric and positive definite (see
e.g. [7]). Throughout this paper we assume that X is a compact metric space and that &
is continuous, i.e. H contains only continuous functions. In order to avoid cumbersome
notations we additionally assume ||%|| ., < 1. Now given a regularization parameter A\ > 0
the decision function of an SVM is

(ractra) s= angmi A1 + 3 317 +0) ©
beR =

where I(t) := max{0,1 — ¢} is the so-called hinge loss. Unfortunately, only a few results
on learning rates for SVM’s are known: In [8] it was shown that SVM’s can learn with
linear rate if the distribution is noise-free and the two classes can be strictly separated by
the RKHS. For RKHS which are dense in the space C'(X) of continuous functions the
latter condition is satisfied if the two classes have strictly positive distance in the input
space. Of course, these assumptions are far too strong for almost all real-world problems.
Furthermore, Wu and Zhou (see [9]) recently established rates under the assumption that
is contained in a Sobolev space. In particular, they proved rates of the form (logn)~? for
some p > 0 if the SVM uses a Gaussian kernel. Obviously, these rates are much too slow
to be of practical interest and the difficulties with smoothness assumptions have already
been discussed above.

For our first result, which is much stronger than the above mentioned results, we need to
introduce two concepts both of which deal with the involved RKHS. The first concept de-
scribes how well a given RKHS H can approximate a distribution P. In order to introduce
it we define the I-risk of a function f : X — R by Ry p(f) := Eqy~pl(yf(x)). The
smallest possible I-risk is denoted by R; p := inf{R; p(f) | f : X — R}. Furthermore,
we define the approximation error function by

a() = it (Sl +Rep(D) = Rip, A2 0. @

The function a(.) quantifies how well an infinite sample SVM with RKHS H approximates
the minimal {-risk (note that we omit the offset b in the above definition for simplicity). If
H is dense in the space of continuous functions C'(X) then for all P we have a(\) — 0 if
A — 0 (see [3]). However, in non-trivial situations no rate of convergence which uniformly
holds for all distributions P is possible. The following definition characterizes distributions
which guarantee certain polynomial rates:

Definition 2.1 Let H be a RKHS over X and P be a distribution on X x Y. Then H
approximates P with exponent 3 € (0, 1] if there isa C' > 0 such that for all A > 0:

a(A) < CN7.



It can be shown (see [10]) that the extremal case 5 = 1 is equivalent to the fact that the
minimal [-risk can be achieved by an element of H. Because of the specific structure of the

approximation error function values 3 > 1 are only possible for distributions with 2

Finally, we need a complexity measure for RKHSs. To this end let A C F be a subset of a
Banach space E. Then the covering numbers of A are defined by

N(A e, E) := min{n >1:3xq,...,2, € Ewith A C U(xz —I—EBE)}, e> 0,
i=1
where B denotes the closed unit ball of E. Now our complexity measure is:

Definition 2.2 Let H be a RKHS over X and By its closed unit ball. Then H has com-
plexity exponent 0 < p < 2 if there is an a,, > 0 such that for all £ > 0 we have

log N (Bp,e,C(X)) < ape?.

Note, that in [10] the complexity exponent was defined in terms of N (B, e, L2(Tx)),
where Lo (T ) is the Lo-space with respect to the empirical measure of (x4, . .., x,). Since
we always have N (Bg, e, Lo(T)) < N (Bg,e,C(X)) the Definition 2.2 is stronger than
the one in [10]. Here, we only used Definition 2.2 since it enables us to compare our results
with [11]. However, all results remain true if one uses the original definition of [10].

For many RKHSs bounds on the complexity exponents are known (see e.g. [3] and [10]).
Furthermore, many SVMs use a parameterized family of RKHSs. For such SVMs the
constant a,, may play a crucial role. We will see below, that this is in particular true for
SVMs using a family of Gaussian RBF kernels. Let us now formulate our first result on
rates:

Theorem 2.3 Let H be a RKHS of a continuous kernel on X with complexity exponent
0 < p < 2, and let P be a probability measure on X x Y with Tsybakov noise exponent
0 < g < oo. Furthermore, assume that H approximates P with exponent 0 < 5 < 1. We

. _ 4(q+1) R
define \,, :==n @areat 057, Then for all € > 0 there is a constant C' > 0 such that for
allz > 1andall n > 1 we have

* n 2 —A4Blatl) +e —x
Pr (T S (X X Y) : Rp(fT)\n “V‘bT,)\n) < Rp+Cx*n~ CatpatH+m) ) > 1—e".

Here Pr* denotes the outer probability of P™ in order to avoid measurability considera-
tions.

Remark 2.4 With a tail bound of the form of Theorem 2.3 one can easily get rates for (1).
48(g+1)
In the case of Theorem 2.3 these rates have the form n™ Gapetn(FH e forall e > 0.

Remark 2.5 For brevity’s sake our major aim was to show the best possible rates using
our techniques. Therefore, Theorem 2.3 states rates for the SVM under the assumption that
(A\n) is optimally chosen. However, we emphasize, that the techniques of [10] also give
rates if (\,,) is chosen in a different (and thus sub-optimal) way. This is also true for our
results on SVM'’s using Gaussian kernels which we will establish below.

Remark 2.6 In [5] it is assumed that a Bayes classifier is contained in the function class
the algorithm minimizes over. This assumption corresponds to a perfect approximation of

P by H,ie. g = 1. In this case our rate is (essentially) of the form nEatT, If we
rescale the complexity exponent p from (0, 2) to (0, 1) and write p’ for the new complexity

gl
exponent this rate becomes n~ «+#»"a+2, This is exactly the form of Tsybakov’s result in [5].
However, as far as we know our complexity measure cannot be compared to Tsybakov’s.



Remark 2.7 By the nature of Theorem 2.3 it suffices that P satisfies Tsybakov’s noise
assumption for every ¢’ < ¢. It also suffices to suppose that H approximates P with
exponent 3’ for all 5’ < (3, and that H has complexity exponent p’ for all p’ > p. Now,
it is shown in [10] that the RKHS H has an approximation exponent 3 = 1 if and only if
H contains a minimizer of the [-risk. In particular, if H has approximation exponent /3 for
all 5 < 1 but not for 5 = 1 then H does not contain such a minimizer but Theorem 2.3
gives the same result as for 5 = 1. If in addition the RKHS consists of C'*>° functions we
can choose p arbitrarily close to 0, and hence we can obtain rates up to n ! even though H
does not contain a minimizer of the [-risk, that means e.g. a Bayes decision function.

In view of Theorem 2.3 and the remarks concerning covering numbers it is often only
necessary to estimate the approximation exponent. In particular this seems to be true for
the most popular kernel, that is the Gaussian RBF kernel &, (z, 2") = exp(—o?||x — 2'||3),
x,z’ € X on (compact) subsets X of R with width 1 /0. However, to our best knowledge
no non-trivial condition on n or fp = signo(2n — 1) which ensures an approximation
exponent 3 > 0 for fixed width has been established and [12] shows that Gaussian kernels
poorly approximate smooth functions. Hence plug-in rules based on Gaussian kernels may
perform poorly under smoothness assumptions on #. In particular, many types of SVM’s
using other loss functions are plug-in rules and therefore, their approximation properties
under smoothness assumptions on n may be poor if a Gaussian kernel is used. However, our
SVM’s are not plug-in rules since their decision functions approximate the Bayes decision
function (see [13]). Intuitively, we therefore only need a condition that measures the cost of
approximating the “bump” of the Bayes decision function at the “decision boundary”. We
will now establish such a condition for Gaussian RBF kernels with varying widths 1/o,,.
Tothisendlet X_; := {z € X : n < 1} and X; := {z € X : n > 3}. Recall that
these two sets are the classes which have to be learned. Since we are only interested in
distributions P having a Tsybakov exponent ¢ > 0 we always assume that X = X_; U X,
holds Px-almost surely. Now we define

d(I,Xl), ifx € X_q,
T = Qd(z,X_1), ifze Xy, ©)
0, otherwise .

Here, d(z, A) denotes the distance of x to a set A with respect to the Euclidian norm. Note
that roughly speaking 7, measures the distance of x to the “decision boundary”. With the
help of this function we can define the following geometric condition for distributions:

Definition 2.8 Let X C R be compact and P be a probability measure on X x Y. We
say that P has geometric noise exponent « € (0, oo] if we have

/ 7 02n(z) — 1|Px (dz) < oo. (6)
X

Furthermore, P has geometric noise exponent oo if (6) holds for all o > 0.

In the above definition we make neither any kind of smoothness assumption nor do we
assume a condition on Px in terms of absolute continuity with respect to the Lebesgue
measure. Instead, the integral condition (6) describes the concentration of the measure
|2n—1|d Px near the decision boundary. The less the measure is concentrated in this region
the larger the geometric noise exponent can be chosen. In particular, we have (z — 7,1) €
Lo (|2n—1]dPx ) if and only if the two classes X _; and X have strictly positive distance!
If (6) holds for some 0 < a < oo then the two classes may “touch”, i.e. the decision
boundary 0X_; N 0X; is nonempty. Using this interpretation we easily can construct
distributions which have geometric noise exponent oo and touching classes. In general for
these distributions there is no Bayes classifier in the RKHS H,, of k, forany ¢ > 0.



Example 2.9 We say that » is Holder about % with exponent v > 0 on X C R? if there is
a constant ¢, > 0 such that for all z € X we have

2n(x) 1] < 377 W)
If n is Holder about 1/2 with exponent v > 0, the graph of 2n(x) — 1 lies in a multiple
of the envelope defined by 7 at the top and by —7 at the bottom. To be Holder about
1/2 it is sufficient that » is HOlder continuous, but it is not necessary. A function which is
Holder about 1/2 can be very irregular away from the decision boundary but it cannot jump
across the decision boundary discontinuously. In addition a Holder continuous function’s
exponent must satisfy 0 < v < 1 where being Holder about 1/2 only requires v > 0.
For distributions with Tsybakov exponent such that » is Holder about 1/2 we can bound
the geometric noise exponent. Indeed, let P be a distribution which has Tsybakov noise
exponent ¢ > 0 and a conditional probability  which is Holder about 1/2 with exponent
~ > 0. Then (see [10]) P has geometric noise exponent « for all o < 7%1.

For distributions having a non-trivial geometric noise exponent we can now bound the
approximation error function for Gaussian RBF kernels:

Theorem 2.10 Let X be the closed unit ball of the Euclidian space R?, and H, be the
RKHS of the Gaussian RBF kernel k, on X with width 1/0 > 0. Furthermore, let P
be a distribution with geometric noise exponent 0 < a < oo. We write a,(.) for the
approximation error function with respect to H,. Then there is a C > 0 such that for all
A > 0,0 > 0we have

a,(\) < C(ad)\ + a*ad) : ®)

In order to let the right hand side of (8) converge to zero it is necessary to assume both
A — 0and o — oo. An easy consideration shows that the fastest rate of convergence can
be achieved if o(\) := A~ 04, In this case we have asn)(A) < 2C\=+1, Roughly
speaking this states that the family of spaces H,(,) approximates P with exponent _<5.
Note, that we can obtain approximation rates up to linear order in X for sufficiently benign
distributions. The price for this good approximation property is, however, an increasing
complexity of the hypothesis class H, ) for o — oo, i.e. A — 0. The following theorem
estimates this in terms of the complexity exponent:

Theorem 2.11 Let H, be the RKHS of the Gaussian RBF kernel k£, on X. Then for all
0<p<2andd >0, thereisacyqs > 0such that for all e > 0 and all o > 1 we have

sup log N(By,, e, Lo(Tx)) < cpasot™2)0+0dp,
Tezn

Having established both results for the approximation and complexity exponent we can
now formulate our main result for SVM’s using Gaussian RBF kernels:

Theorem 2.12 Let X be the closed unit ball of the Euclidian space R¢, and P be a distri-
bution on X x Y with Tsybakov noise exponent 0 < ¢ < oo and geometric noise exponent
0 < a < 0o. We define

a+1 .
N~ Zati ifa < a+2
An = o
n = _ 2(at1)(g+1) .
n~ 2atn+3¢+2  otherwise ,

1
and o, := X\, “*P? in both cases. Then for all ¢ > 0 there is a C' > 0 such that for all
xz > landall n > 1the SVM using A,, and Gaussian RBF kernel with width 1/, satisfies

Pr* (T € (X xY)": Rp(fra, +bra,) < Rp+ cﬁn*ﬁ“) >1-¢®



if « < 22 and
q

2a(g+1)

Pr* (T e (X xY)":Rp(fra, +bry,) <Rp+ Cx’n~ 2a(q+2)+3q+4+5) >1—e"
otherwise. If & = oo the latter holds if o,, = o is a constant with o > 2v/d.

Most of the remarks made after Theorem 2.3 also apply to the above theorem up to obvious
modifications. In particular this is true for Remark 2.4, Remark 2.5, and Remark 2.7.

3 Discussion of a modifi ed support vector machine

Let us now discuss a recent result (see [11]) on rates for the following modification of the
original SVM:

1 n
Iy = arg?gg Al flla + - ;l(yif(xi)) : 9)

Note that unlike in (3) the norm of the regularization term is not squared in (9). To describe
the result of [11] we need the following modification of the approximation error function:

a*(3) = il (Ml +Rip(f)) = Rup. A>0. (10)

Obviously, a*(.) plays the same role for (9) as a(.) does for (3). Moreover, it is easy to
see that for all A > 0 with || fp x| > 1 we have a*(X\) < a(X). Now, a slightly simplified
version of the result in [11] reads as follows:

Theorem 3.1 Let H be a RKHS of a continuous kernel on X with complexity exponent
0 < p < 2, and let P be a distribution on X x Y with Tsybakov noise exponent co. We

define \,, := n~ =%, Then for all z > 1thereisa C, > 0such that for all n > 1 we have

Pr*(Te(XxY)":Rp(fr},,\")ng—i—Cx(a*()\n)—i—n*ﬁ)) >1-e".

Besides universal constants the exact value of C,, is given in [11]. Also note, that the orig-
inal result of [11] used the eigenvalue distribution of the integral operator T}, : Lo(Px) —
Lo (Px) as a complexity measure. If H has complexity exponent p it can be shown that
these eigenvalues decay at least as fast as n~2/?. Since we only want to compare Theorem
3.1 with our results we do not state the eigenvalue version of Theorem 3.1.

It was also mentioned in [11] that using the techniques therein it is possible to derive rates
for the original SVM. In this case a*(\,,) has to be replaced by a(),,) and the stochastic

term n~ = has to be replaced by “some more involved term” (see [11, p.10]). Since
typically a*(.) decreases faster than a(.) the authors conclude that using a regularization
term ||.|| instead of the original ||.||? will “necessarily yield an improved convergence rate”
(see [11, p.11]). Let us now show that this conclusion is not justified. To this end let us
suppose that H approximates P with exponent 0 < 3 < 1, i.e. a(A) < C\? for some
C > 0andall A > 0. It was shown in [10] that this equivalent to

it Rip(f) —Rip < o ATH (11)

[FlI<A—1/2

for some constant ¢; > 0 and all A > 0. Furthermore, using the techniques in [10] it
2

is straightforward to show that (11) is equivalent to a*(\) < cz)\Tﬁﬁ. Therefore, if H

. . . Y
approximates P with exponent 3 then the rate in Theorem 3.1 becomes n @0 which



is the rate we established in Theorem 2.3 for the original SVM. Although the original SVM
(3) and the madification (9) learn with the same rate there is a substantial difference in the
way the regularization parameter has to be chosen in order to achieve this rate. Indeed,

for the original SVM we have to use A\, = n" @5 while for (9) we have to choose

Ap = n~ =%, In other words, since p is known for typical RKHS’s but 3 is not, we know
the asymptotically optimal choice of \,, for (9) while we do not know the corresponding
optimal choice for the standard SVM. It is naturally to ask whether a similar observation
can be made if we have a Tsybakov noise exponent which is smaller than co. The answer
to this question is “yes” and “no”. More precisely, using our techniques in [10] one can
show that for 0 < ¢ < oo the optimal choice of the regularization parameter in (9) is

Ap = n‘% leading to the rate n_%. As for ¢ = oo this rate coincides
with the rate we obtained for the standard SVM. Furthermore, the asymptotically optimal
choice of A, is again independent of the approximation exponent 5. However, it depends on
the (typically unknown) noise exponent ¢. This leads to the following important questions:

Question 1: Is it easier to find an almost optimal choice of X for (9) than for the standard
SVM? And if so, what are the computational requirements of solving (9)?

Question 2: Can a similar observation be made for the parametric family of Gaussian RBF
kernels used in Theorem 2.12 if P has a non-trivial geometric noise exponent o?
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