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Abstract

Protein interactions typically arise from a physical interaction of one or
more small sites on the surface of the two proteins. Identifying these sites
is very important for drug and protein design. In this paper, we propose
a computational method based on probabilistic relational model that at-
tempts to address this task using high-throughput protein interaction data
and a set of short sequence motifs. We learn the model using the EM
algorithm, with a branch-and-bound algorithm as an approximate infer-
ence for the E-step. Our method searches for motifs whose presence in a
pair of interacting proteins can explain their observed interaction. It also
tries to determine which motif pairs have high affinity, and can therefore
lead to an interaction. We show that our method is more accurate than
others at predicting new protein-protein interactions. More importantly,
by examining solved structures of protein complexes, we find that 2/3 of
the predicted active motifs correspond to actual interaction sites.

1 Introduction

Many cellular functions are carried out through physical interactions between proteins.
Discovering the protein interaction map can therefore help to better understand the work-
ings of the cell. Indeed, there has been much work recently on developing high-throughput
methods to produce a more complete map of protein-protein interactions [1, 2, 3].
Interactions between two proteins arise from physical interactions between small re-
gions on the surface of the proteins [4] (see Fig. 2(b)). Finding interaction sites is an
important task, which is of particular relevance to drug design. There is currently no high-
throughput experimental method to achieve this goal, so computational methods are re-
quired. Existing methods either require solving a protein’s 3D structure (e.g., [5]), and
therefore are computationally very costly and not applicable on a genome-wide scale, or
use known interaction sites as training data (e.g., [6]), which are relatively scarce and hence
have poor coverage. Other work focuses on refining the highly noisy high-throughput inter-
action maps [7, 8, 9], or on assessing the confidence levels of the observed interactions [10].

In this paper, we propose a computational method for predicting protein interactions



Figure 1: (a) Simple illustration of our assumptions for protein-protein interactions. The small
elements denote motif occurrences on proteins, with red denoting active and gray denoting inactive
motifs. (b) A fragment of our probabilistic model, for the proteins P, P>, Ps. We use yellow to
denote an assignment of the value true, and black to denote the value false; full circles denote an
assignment observed in the data, and patterned circles an assignment hypothesized by our algorithm.
The dependencies involving inactive motif pairs were removed from the graph because they do not
affect the rest of the model.

and the sites at which the interactions take place, which uses as input only high-throughput
protein-protein interaction data and the protein sequences. In particular, our method as-
sumes no knowledge of the 3D protein structure, or of the sites at which binding occurs.

Our approach is based on the assumption that interaction sites can be described using a
limited repertoire of conserved sequence motifs [11]. This is a reasonable assumption since
interaction sites are significantly more conserved than the rest of the protein surface [12].
Given a protein interaction map, our method tries to explain the observed interactions by
identifying a set of sites of motif occurrence on every pair of interacting proteins through
which the interaction is mediated. To understand the intuition behind our approach, con-
sider the example of Fig. 1(a). Here, the interaction pattern of the protein P; can best be
explained using the motif pair a, b, where a appears in P; and b in the proteins Ps, P35, Py
but not in P5s. By contrast, the motif pair d, b is not as good an explanation, because d
also appears in Ps, which has a different interaction pattern. In general, our method aims
to identify motif pairs that have high affinity, potentially leading to interaction between
protein pairs that contain them.

However, a sequence motif might be used for a different purpose, and not give rise to an
active binding site; it might also be buried inside the protein, and thus be inaccessible for
interaction. Thus, the appearance of an appropriate motif does not always imply interaction.
A key feature of our approach is that we allow each motif occurrence in a protein to be
either active or inactive. Interactions are then induced only by the interactions of high-
affinity active motifs in the two proteins. Thus, in our example, the motif d in p5 is inactive,
and hence does not lead to an interaction between p, and p,, despite the affinity between
the motif pair ¢, d. We note that Deng et al. [8] proposed a somewhat related method for
genome-wide analysis of protein interaction data, based on protein domains. However,
their method is focused on predicting protein-protein interactions and not on revealing the
site of interaction, and they do not allow for the possibility that some domains are inactive.

Our goal is thus to identify two components: the affinities between pairs of motifs, and
the activity of the occurrences of motifs in different proteins. Our algorithm addresses this
problem by using the framework of Bayesian networks [13] and probabilistic relational
models [14], which allows us to handle the inherent noise in the protein interaction data
and the uncertain relationship between interactions and motif pairs. We construct a model
encoding our assumption that protein interactions are induced by the interactions of active
motif pairs. We then use the EM algorithm [15], to fill in the details of the model, learning
both the motif affinities and activities from the observed data of protein-protein interactions
and protein motif occurrences. We address the computational complexity of the E-step in



these large, densely connected models by using an approximate inference procedure based
on branch-and-bound.

We evaluated our model on protein-protein interactions in yeast and Prosite motifs [11].
As a basic performance measure, we evaluated the ability of our method to predict new
protein-protein interactions, showing that it achieves better performance than several other
models. In particular, our results validate our assumption that we can explain interactions
via the interactions of active sequence motifs. More importantly, we analyze the ability
of our method to discover the mechanism by which the interaction occurs. Finally, we
examined co-crystallized protein pairs where the 3D structure of the interaction is known,
so that we can determine the sites at which the interaction took place. We show that our
active motifs are more likely to participate in interactions.

2 TheProbabilistic Modd

The basic entities in our probabilistic model are the proteins and the set of sequence motifs
that can mediate protein interactions. Our model therefore contains a set of protein entities
P = {P,...,P,}, with the motifs that occur in them. Each protein P is associated with
the set of motifs that occur in it, denoted by P.M. As we discussed, a key premise of
our approach is that a specific occurrence of a sequence motif may or may not be active.
Thus, each motif occurrence a € P.M is associated with a binary-value variable P.A,,
which takes the value true if A, is active in protein P and false otherwise. We structure the

prior probability P(P.A, = true) = min{0.8, %}ﬁm}, to capture our intuition that
the number of active motifs in a protein is roughly a constant fraction of the total number
of motifs in the protein, but that even proteins with few motifs tend to have at least some

number of active motifs.

A pair of active motifs in two proteins can potentially bind and induce an interaction
between the corresponding proteins. Thus, in our model, a pair of proteins interact if each
contains an active motif, and this pair of motifs bind to each other. The probability with
which two motifs bind to each other is called their affinity. We encode this assumption by
including in our model entities 73; corresponding to a pair of proteins P;, P;. For each
pair of motifs « € P;.M and b € P;.M, we introduce a variable 73;.A,5, which is a
deterministic AND of the activity of these two motifs. Intuitively, this variable represents
whether the pair of motifs can potentially interact. The probability with which two active
motif occurrences bind is their affinity. We model the binding event between two motif
occurrences using a variable T;;. By, and define: P(T;;.Bqp = true | T;;. Aqp = true) =
qp and P(T;;.Bap = true | T;;.Aqp = false) = 0, where 6, is the affinity between motifs
a and b. This model reflects our assumption that two motif occurrences can bind only if
they are both active, but their actual binding probability depends on their affinity. Note that
this affinity is a feature of the motif pair and does not depend on the proteins in which they
appear.

We must also account for interactions that are not explained by our set of motifs,
whether because of false positives in the data, or because of inadequacies of our model
or of our motif set. Thus, we add a spurious binding variable T;;.S, for cases where an
interaction between P; and P; exists, but cannot be explained well by our set of active
motifs. The probability that a spurious binding occurs is given by P(T;;.S = true) = fs.

Finally, we observe an interaction between two proteins if and only if some form of
binding occurs, whether by a motif pair or a spurious binding. Thus, we define a variable
T;;.0, which represents whether protein ¢ was observed to interact with protein j, to be
a deterministic OR of all the binding variables 7};.S and T;;.B,,. Overall, T3;.0 is a
noisy-OR [13] of all motif pair variables T;;. A .

Note that our model accounts for both types of errors in the protein interaction data.
False negatives (missing interactions) in the data are addressed through the fact that the
presence of an active motif pair only implies that binding takes place with some probability.
False positives (wrong interactions) in the data are addressed through the introduction of



the spurious interaction variables.
The full model defines a joint probability distribution over the entire set of attributes:

P(P.A,T.A,T.B, TS, T.0) = [, [L.cp 1 P(Pi-Ad)
0 [Lacp, arpep, mn P(Tij-Aay | Pi-Aa, Py Ay)P(T55.Bay | Tij-Aap)
i | P(T,;.S)P(T;;.0 | T;; B, T;.5)

where each of these conditional probability distributions is as specified above. We use
© to denote the entire set of model parameters {6, ,}4. U {0s}. An instantiation of our
probabilistic model is illustrated in Fig. 1(b).

3 Learningthe Model

We now turn to the task of learning the model from the data. In a typical setting, we are
given as input a protein interaction data set, specifying a set of proteins P and a set of
observed interacting pairs T.O. We are also given a set of potentially relevant motifs, and
the occurrences of these motifs in the different proteins in P. Thus, all the variables except
for the O variables are hidden. Our learning task is thus twofold: we need to infer the values
of the hidden variables, both the activity variables P.A, T.A, and the binding variables
T.B, T.S; we also need to find a setting of the model parameters ©, which specify the
motif affinities. We use a variant of the EM algorithm [15] to find both an assignment to
the parameters ©, and an assignment to the motif variables P. A, which is a local maximum
of the likelihood function P(T.O,P.A | ©). Note that, to maximize this objective, we
search for a MAP assignment to the motif activity variables, but sum out over the other
hidden variables. This design decision is reasonable in our setting, where determining motif
activities is an important goal; it is a key assumption for our computational procedure.

As in most applications of EM, our main difficulty arises in the E-step, where we need
to compute the distribution over the hidden variables given the settings of the observed
variables and the current parameter settings. In our model, any two motif variables (both
within the same protein and across different proteins) are correlated, as there exists a path
of influence between them in the underlying Bayesian network (see Fig. 1(c)). These cor-
relations make the task of computing the posterior distribution over the hidden variables
intractable, and we must resort to an approximate computation. While we could apply a
general purpose approximate inference algorithm such as loopy belief propagation [16],
such methods may not converge in densely connected model such as this one, and there
are few guarantees on the quality of the results even if they do converge. Fortunately, our
model turns out to have additional structure that we can exploit. We now describe an ap-
proximate inference algorithm that is tailored to our model, and is guaranteed to converge
to a (strong) local maximum.

Our first observation is that the only variables that correlate the different protein pairs
T;; are the motif variables P.A. Given an assignment to these activity variables, the net-
work decomposes into a set of independent subnetworks, one for each protein pair. Based
on this observation, we divide our computation of the E-step into two parts. In the first,
we find an assignment to the motif variables in each protein, P.A; in the second, we com-
pute the posterior probability over the binding motif pair variables T.B, T.S, given the
assignment to the motif variables.

We begin by describing the second phase. We observe that, as all the motif pair vari-
ables, T.A, are fully determined by the motif variables, the only variables left to reason
about are the binding variables T.B and T.S. The variables for any pair T;; are inde-
pendent of the rest of the model given the instantiation to T.A and the interaction evi-
dence. That fact, combined with the noisy-OR form of the interaction, allows us to com-
pute the posterior probability required in the E-step exactly and efficiently. Specifically,
the computation for the variables associated with a particular protein pair T;; is as fol-
lows, where we omit the common prefix T;; to simplify notation. If A,, = false, then



P(Bgqp =true | A, = false, O, ©) = 0. Otherwise, if A,;, = true, then

PBa A,@PO Ba :true’A7@
Pl =we | A.0.0) = FELAELR )

The first term in the numerator is simply the motif affinity 0,;; the second term is 1 if
O = true and 0 otherwise. The numerator can easily be computed as P(O | A,0) =
1—(1=0s)[14, ,~true(l — fap). The computation for P(S) is very similar.

We now turn to the first phase, of finding a setting to all of the motif variables. Un-
fortunately, as we discussed, the model is highly interconnected, and a finding an optimal
joint setting to all of these variables P.A is intractable. We thus approximate finding this
joint assignment using a method that exploits our specific structure. Our method iterates
over proteins, finding in each iteration the optimal assignment to the motif variables of each
protein given the current assignment to the motif activities in the remaining proteins. The
process repeats, iterating over proteins, until convergence.

As we discussed, the likelihood of each assignment to P;.A can be easily computed
using the method described above. However, the computation for each protein is still ex-
ponential in the number of motifs it contains, which can be large (e.g., 15). However, in
our specific model, we can apply the following branch-and-bound algorithm (similar to an
approach proposed by Henrion [17] for BN20 networks) to find the globally optimal as-
signment to the motif variables of each protein. The idea is that we search over the space
of possible assignments P;. A for one that maximizes the objective we wish to maximize.
We can show that if making a motif active relative to one assignment does not improve the
objective, it will also not improve the objective relative to a large set of other assignments.

More precisely, let f(P;,.A) = P(P;.A,P_;.A|O,#) denote the objective we wish
to maximize, where P_;.A is the fixed assignment to motif variables in all proteins
except P;. Let P;.A_, denote the assignment to all the motif variables in P; except
for A,. We compute the ratio of f after we switch P;.A, from false to true. Let
ha(P;) = Tlp, 4,wrue(l — bap) denote the probability that motif o does not bind with

any active motif in P;. We can now compute:
f(Pi.Aa = true, Pi.A,a) g

Ba(Pifha) = f(P.A, = false, P;.A _,) 1o g

1- (1 - es)ha(Pj) Ha;éb,Pi.Ab:true hb(Pj)
II re- ]I 09T ey~ ®
1<i<n 1<j<n S) 1la#b,P;. Ay=true "*b\ 175
Ti]‘ .O=false T,;j .O=true
where g is the prior probability for a motif in protein P; to be active.

Now, consider a different point in the search, where our current motif activity assign-
ment is P;.A’_,, which has all the active motifs in P,.A _, and some additional ones. The
first two terms in the product of Eq. (1) are the same for A,(P;,.A_,) and A, (P;.A” ).
For the final term (the large fraction), one can show using some algebraic manipulation
that this term in A,(P;.A’,) is lower than that for A,(P;.A_,). We conclude that
A, (Pi.A_,) > Ay (P A’ ), and hence that:

f(PLALL = true, PLA_a) <1 = f(PZAa = true, Pi-ALa) <1
f(Pi.A, = false, PLA_,) — f(Pi.A, = false, PLAL ) =

It follows that, if switching motif a from inactive to active relative to P;. A decreases f, it
will also decrease f if we have some additional active motifs.

We can exploit this property in a branch-and-bound algorithm in order to find the glob-
ally optimal assignment P;.A. Our algorithm keeps a set V' of viable candidates for motif
assignments. For presentation, we encode assignments via the set of active motifs they
contain. Initially, V' contains only the empty assignment {}. We start out by considering



motif assignments with a single active motif. We put such an assignment {a} in V if its
f-score is higher than f({}). Now, we consider assignments {a, b} that have two active
motifs. We consider {a, b} only if both {a} and {b} are in V. If so, we evaluate its f-score,
and add it to V' if this score is greater than that of {a} and {b}. Otherwise, we throw it
away. We continue this process for all assignments of size k: For each assignment with
active motif set S, we test whether S — {a} € V forall a € S; if we compare f(S) to each
f(S — {a}), and add it if it dominates all of them. The algorithm terminates when, from
some k, no assignment of size & is saved.

To understand the intuition behind this pruning procedure, consider a candidate assign-
ment {a, b, ¢, d}, and assume that {a,b,c} € V, but {b,c,d} ¢ V. In this case, we must
have that {b,c} € V, but adding d to that assignment reduces the f-score. In this case, as
shown by our analysis, adding d to the superset {a, b, ¢} would also reduce the f-score.

This algorithm is still exponential in worst case. However, in our setting, a protein with
many motifs has a low prior probability that each of them is active. Hence, adding new
motifs is less likely to increase the f-score, and the algorithm tends to terminate quickly.
As we show in Section 4, this algorithm significantly reduces the cost of our procedure.

Our E-step finds an assignment to P.A which is a strong local optimum of the ob-
jective function max P(P.A | T.0, ©®): The assignment has higher probability than any
assignment that changes any of the motif variables for any single protein. For that assign-
ment, our algorithm also computes the distribution over all of the binding variables, as
described above. Using this completion, we can now easily compute the (expected) suffi-
cient statistics for the different parameters in the model. As each of these parameters is a
simple binomial distribution, the maximum likelihood estimation in the M-step is entirely
standard; we omit details.

4 Reaults

We evaluated our model on reliable S. cerevisiae protein interactions data from MIPS [2]
and DIP [3] databases. As for non-interaction data, we randomly picked pairs of proteins
that have no common function and cellular location. This results in a dataset of 2275
proteins, 4838 interactions (7;,;.0 = true), and 9037 non-interactions (T;;.0 = false). We
used sequence motifs from the Prosite database [11] resulting in a dataset of 516 different
motifs with an average of 7.1 motif occurrences per protein. If a motif pair doesn’t appear
between any pair of interacting proteins, we initialize its affinity to be 0 to maximize the
joint likelihood. Its affinity will stay at 0 during the EM iterations and thus simplify our
model structure. We set the initial affinity for the remaining 8475 motif pairs to 0.03.

We train our model with motifs initialized to be either all active (P.A = true) or all
inactive (P.A = false). We get similar results with these two different initializations,
indicating the robustness of our algorithm. Below we only report the results based on all
motifs initialized to be active. Our branch-and-bound algorithm is able to significantly
reduce the number of motif activity assignments that need to be evaluated. For a protein
with 15 motifs, the number of assignments evaluated is reduced from 2! = 32768 in
exhaustive search to 802 using our algorithm. Since majority of the computation is spent
on finding the activity assignments, this resulted in a 40 fold reduction in running time.

Predicting protein-protein interactions. We test our model by evaluating its performance
in predicting interactions. We test this performance using 5-fold cross validation on the set
of interacting and non-interacting protein pairs. In each fold, we train a model and predict
P(T;;.0) = true for pairs P;, P; in the held-out interactions.

Many motif pairs are over-represented in interacting proteins. We thus compare our
method to a baseline method that ranks pairs of proteins on the basis of the maximum
enrichment of over-represented motif pairs (see [18] for details). We also compare it to
a model where all motifs are set to be active; this is analogous to the method of Deng
et al. [8]. For completeness, we compare the two variants of the model using data on the
domain (Pfam and ProDom [19]) content of the proteins as well as the Prosite motif content.
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Figure 2: (a) ROC curve for different methods. The X-axis is the proportion of all non-interacting
protein pairs in the training data predicted to interact. Y-axis is the proportion of all interacting protein
pairs in the training data predicted to interact. Points are generated using different cutoff probabilties.
A larger area under the curve indicates better prediction. Our method (square marker) outperforms
all other methods. (b) Two protein chains that form a part of the 1ryp complex in PDB, interacting at
the site of two short sequence motifs.

The ROC curves in Fig. 2(a) show that our method outperforms the other methods, and that
the additional degree of freedom of allowing motifs to be inactive is essential. These results
validate our modeling assumptions; they also show that our method can be used to suggest
new interactions and to assign confidence levels on observed interactions, which is much
needed in view of the inaccuracies and large fraction of missing interactions in current
interaction databases.

Evaluating predicted active motifs. A key feature of our approach is its ability to detect
pairs of interacting motifs. We evaluate these predictions against the data from Protein Data
Bank (PDB) [20], which contains some solved structures of interacting proteins Fig. 2(b).
While the PDB data is scarce, it provides the ultimate evaluation of our predicted active
motifs. We extracted all structures from PDB that have at least two co-crystallized chains,
and whose chains are nearly identical to yeast proteins. From the residues that are in contact
between two chains (distance < 5 Angstroms), we infer which protein motifs participate in
interactions. Among our training data, 105 proteins have co-crystallized structure in PDB.
On these proteins, our data contained a total of 620 motif occurrences, of which 386 are
predicted to be active. Among those motifs predicted to be active, 257 of them (66.6%)
are interacting in PDB. Among the 234 motifs predicted to be inactive, only 120 of them
(51.3%) are interacting. The chi-square p-value is 10~%. On the residue level, our predicted
active motifs consist of 3736 amino acids, and 1388 of them (37.2%) are interacting. In
comparison, our predicted inactive motifs consist of 3506 amino acids, and only 588 of
them (16.0%) are interacting. This significant enrichment provides support for the ability
of our method to detect motifs that participate in interactions. In fact, the set of interactions
in PDB is only a subset of the interactions those proteins participate in. Therefore, the
actual rate of false positive active motifs is likely to be lower than we report here.

5 Discussion and Conclusions

In this paper, we presented a probabilistic model which explicitly encodes elements in the
protein sequence that mediate protein-protein interactions. By using a variant of the EM al-



gorithm and a branch-and-bound algorithm for the E-step, we make the learning procedure
tractable. Our result shows that our method successfully uncovers motif activities and bind-
ing affinities, and uses them to predict both protein interactions and specific binding sites.
The ability of our model to predict structural elements, without a full structure analysis,
provides support for the viability of our approach.

Our use of a probabilistic model provides us with a general framework to incorporate
different types of data into our model, allowing it to be extended in varies ways. First,
we can incorporate additional signals for protein interactions, such as gene expression data
(as in [9]), cellular location, or even annotations from the literature (as in [7]). We can
also integrate protein interaction data across multiple species; for example, we might try to
use the yeast interaction data to provide more accurate predictions for the protein-protein
interactions in fly [10].
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