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Abstract

In this paper, linear multilayer ICA (LMICA) is proposed for extracting
independent components from quite high-dimensional observed signals
such as large-size natural scenes. There are two phases in each layer of
LMICA. One is the mapping phase, where a one-dimensional mapping
is formed by a stochastic gradient algorithm which makes more highly-
correlated (non-independent) signals be nearer incrementally. Another
is the local-ICA phase, where each neighbor (namely, highly-correlated)
pair of signals in the mapping is separated by the MaxKurt algorithm.
Because LMICA separates only the highly-correlated pairs instead of all
ones, it can extract independent components quite efficiently from ap-
propriate observed signals. In addition, it is proved that LMICA always
converges. Some numerical experiments verify that LMICA is quite ef-
ficient and effective in large-size natural image processing.

1 Introduction

Independent component analysis (ICA) is a recently-developed method in the fields of
signal processing and artificial neural networks, and has been shown to be quite useful
for the blind separation problem [1][2][3] [4]. The linear ICA is formalized as follows. Let
s andA areN -dimensional source signals andN ×N mixing matrix. Then, the observed
signalsx are defined as

x = As. (1)

The purpose is to find outA (or the inverseW ) when the observed (mixed) signals only
are given. In other words, ICA blindly extracts the source signals fromM samples of the
observed signals as follows:

Ŝ = WX, (2)
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whereX is anN ×M matrix of the observed signals and̂S is the estimate of the source
signals. This is a typical ill-conditioned problem, but ICA can solve it by assuming that the
source signals are generated according to independent and non-gaussian probability dis-
tributions. In general, the ICA algorithms find outW by maximizing a criterion (called
the contrast function) such as the higher-order statistics (e.g. the kurtosis) of every com-
ponent ofŜ. That is, the ICA algorithms can be regarded as an optimization method of
such criteria. Some efficient algorithms for this optimization problem have been proposed,
for example, the fast ICA algorithm [5][6], the relative gradient algorithm [4], and JADE
[7][8].

Now, suppose that quite high-dimensional observed signals (namely,N is quite large) are
given such as large-size natural scenes. In this case, even the efficient algorithms are not
much useful because they have to find out all theN2 components ofW . Recently, we pro-
posed a new algorithm for this problem, which can find out global independent components
by integrating the local ICA modules. Developing this approach in this paper, we propose
a new efficient ICA algorithm named “ the linear multilayer ICA algorithm (LMICA).” It
will be shown in this paper that LMICA is quite efficient than other standard ICA algo-
rithms in the processing of natural scenes. This paper is an extension of our previous works
[9][10].

This paper is organized as follows. In Section 2, the algorithm is described. In Section 3,
numerical experiments will verify that LMICA is quite efficient in image processing and
can extract some interesting edge detectors from large natural scenes. Lastly, this paper is
concluded in Section 4.

2 Algorithm

2.1 basic idea

LMICA can extract all the independent components approximately by repetition of the
following two phases. One is the mapping phase, which brings more highly-correlated
signals nearer. Another is local-ICA phase, where each neighbor pair of signals in the
mapping is separated by MaxKurt algorithm [8]. The mechanism of LMICA is illustrated
in Fig. 1. Note that this illustration holds just in the ideal case where the mixing matrix
A is given according to such a hierarchical model. In other words, itdoes nothold for an
arbitraryA. It will be shown in Section 3 that this hierarchical model is quite effective at
least in natural scenes.

2.2 mapping phase

In the mapping phase, given signalsX are arranged in a one-dimensional array so that
pairs(i, j) taking higher

∑
k x2

ikx2
jk are placed nearer. LettingY = (yi) be the coordinate

of thei-th signalxik, the following objective functionµ is defined:

µ (Y ) =
∑

i,j

∑

k

x2
ikx2

jk (yi − yj)
2
. (3)

The optimal mapping is found out by minimizingµ with respect toY under the constraints
that

∑
yi = 0 and

∑
y2

i = 1. It has been well-known that such optimization problems can
be solved efficiently by a stochastic gradient algorithm [11][12]. In this case, the stochastic
gradient algorithm is given as follows (see [10] for the details of the derivation of this
algorithm):

yi (T + 1) := yi (T )− λT (ziyiζ + ziη) , (4)



Figure1: The illustration of LMICA (the ideal case): Each number from 1 to 8 means
a source signal. In the first local-ICA phase, each neighbor pair of the completely-mixed
signals (denoted “1-8”) is partially separated into “1-4” and “5-8.” Next, the mapping phase
rearranges the partially-separated signals so that more highly-correlated signals are nearer.
In consequence, the four “1-4” signals (similarly, “5-8” ones) are brought nearer. Then,
the local-ICA phase partially separates the pairs of neighbor signals into “1-2,” “3-4,” “5-
6,” and “7-8.” By repetition of the two phases, LMICA can extract all the sources quite
efficiently.

whereλT is the step size at theT -th time step,zi = x2
ik (k is randomly selected from

{1, . . . ,M} at each time step),

ζ =
∑

i

zi, (5)

and
η =

∑

i

ziyi. (6)

By calculatingζ andη before the update for eachi, each update requires justO (N) com-
putation. Eq. (4) is guaranteed to converge to a local minimum of the objective function
µ (Y ) if λT decreases sufficiently slowly (limT→∞ λT = 0 and

∑
λT = ∞).

Because theY in the above method is continuous, each continuousyi is replaced by the
ranking of itself inY in the last of the mapping phase. That is,yi := 1 for the largest
yi, yj := N for the smallest one, and so on. The corresponding permutationσ is given as
σ (i) = yi.

The total procedure of the mapping phase for givenX is described as follows:

mappingphase

1. xik := xik − x̄i for eachi, k, wherex̄i is the mean
∑

k
xik

M .

2. yi = i, andσ (i) = i for eachi.



3. Until the convergence, repeat the following steps:

(a) Selectk randomly from{1, . . . , M}, and letzi = x2
ik for eachi.

(b) Update eachyi by Eq. (4).
(c) NormalizeY to satisfy

∑
i yi = 0 and

∑
i y2

i = 1.

4. Discretizeyi.

5. UpdateX by xσ(i)k := xik for eachi andk.

2.3 local-ICA phase

In the local-ICA phase, the following contrast functionφ (X) (the sum of kurtoses) is used
(MaxKurt algorithm in [8]):

φ (X) = −
∑

i,k

x4
ik, (7)

and φ (X) is minimized by “rotating” the neighbor pairs of signals (namely, under an
orthogonal transformation). For each neighbor pair(i, i + 1), a rotation matrixRi (θ) is
given as

Ri (θ) =




Ii−1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 IN−i−2


 , (8)

whereIn is then× n identity matrix. Then, the optimal anglêθ is given as

θ̂ = argminθφ
(
X ′) , (9)

whereX ′ (θ) = Ri (θ)X. After some tedious transformation of the equations (see [8]), it
is shown that̂θ is determined analytically by the following equations:

sin 4θ̂ =
αij√

α2
ij + β2

ij

, cos 4θ̂ =
βij√

α2
ij + β2

ij

, (10)

where

αij =
∑

k

(
x3

ikxjk − xikx3
jk

)
, βij =

∑
k

(
x4

ik + x4
jk − 6x2

ikx2
jk

)

4
, (11)

andj = i + 1.

Now, the procedure of the local-ICA phase for givenX is described as follows:

local-ICAphase

1. LetW local = IN , Alocal = IN

2. For eachi = {1, . . . , N − 1},
(a) Find out the optimal anglêθ by Eq. (10).

(b) X := Ri(θ̂)X, W local := RiW local, andAlocal := AlocalR
t
i.



2.4 complete algorithm

The complete algorithm of LMICA for any given observed signalsX is given by repeating
the mapping phase and the local-ICA phase alternately. Here,P σ is the permutation matrix
corresponding toσ.

linear multilayer ICA algorithm

1. Initial Settings: LetX be the given observed signal matrix, andW andA beIN .

2. Repetition: Do the following two phases alternately overL times.

(a) Mapping Phase: Find out the optimal permutation matrixP σ and the
optimally-arranged signalsX by the mapping phase. Then,W := P σW
andA := AP t

σ.
(b) Local-ICA Phase: Find out the optimal matricesW local, Alocal, andX.

Then,W := W localW andA := AAlocal.

2.5 some remarks

Relation to MaxKurt algorithm. Eq. (10) is just the same as MaxKurt algorithm [8].
The crucial difference between our LMICA and MaxKurt is that LMICA opti-
mizes just the neighbor pairs instead of all theN(N−1)

2 onesin MaxKurt. In
LMICA, the pairs with higher “costs” (higher

∑
k x2

ikx2
jk) are brought nearer in

the mapping phase. So, independent components can be extracted effectively by
optimizing just the neighbor pairs.

Contrast function. In order to make consistency between this paper and our previous
work [10], the following contrast functionφ instead of Eq. (7) is used in Section
3:

φ (X) =
∑

i,j,k

x2
ikx2

jk. (12)

The minimization of Eq. (12) is equivalent to that of Eq. (7) under the orthogonal
transformation.

Pre-whitening. Though LMICA (which is based on MaxKurt) presupposes thatX is
pre-whitened, the algorithm in Section 2.4 is applicable to any rawX without the
pre-whitening. Because any pre-whitening method suitable for LMICA has not
been found out yet, raw images of natural scenes are given asX in the numeri-
cal experiments in Section 3. In this non-whitening case, the mixing matrixA is
limited to be orthogonal and the influence of the second-order statistics is not re-
moved. Nevertheless, it will be shown in Section 3 that the higher-order statistics
of X cause some interesting results.

3 Results

It has been well-known that various local edge detectors can be extracted from natural
scenes by the standard ICA algorithm [13][14]. Here, LMICA was applied to the same
problem. 30000 samples of natural scenes of12×12 pixels were given as the observed sig-
nalsX. That is,N andM were 144 and 30000. Original natural scenes were downloaded
at http://www.cis.hut.fi/projects/ica/data/images/. The number of



layersL was set 720, where one layer means one pair of the mapping and the local-ICA
phases. For comparison, the experiments without the mapping phase were carried out,
where the mappingY was randomly generated. In addition, the standard MaxKurt algo-
rithm [8] was used with 10 iterations. The contrast functionφ (Eq. (12)) was calculated
at each layer, and it was averaged over 10 independently generatedXs. Fig. 2-(a) shows
the decreasing curves ofφ of normal LMICA and the one without the mapping phase. The
cross points show the result at each iteration of MaxKurt. Because one iteration of MaxKurt
is equivalent to 72 layers of LMICA with respect to the times of the optimizations for the
pairs of signals, a scaling (×72) is applied. Surprisingly, LMICA nearly converged to the
optimal point within just 10 layers. The number of parameters within 10 layers is143×10,
which is much fewer than the degree of freedom ofA ( 144×143

2 ). It suggests that LMICA
gives a quite suitable model for natural scenes. The calculation time with the values ofφ is
shown in Table. 1. It shows that the time costs of the mapping phase are not much higher
than those of the local-ICA phase. The fact that 10 layers of LMICA required much less
time (22sec.) than one iteration of MaxKurt (94sec.) and optimizedφ approximately (4.91)
verifies the efficiency of LMICA. Note that each iteration of MaxKurt can not be stopped
halfway. Fig. 3 shows5× 5 representative edge detectors at each layer of LMICA. At the
20th layer (Fig. 3-(a)), rough and local edge detectors were recognized, though they were
a little unclear. As the layer proceeded, edge detectors became clearer and more global
(see Figs. 3-(b) and 3-(c)). It is interesting that ICA-like local edges (where the higher-
order statistics are dominant) at the early stage were transformed to PCA-like global edges
(the second-order statistics are dominant) at the later stage (see [13]). For comparison, Fig.
3-(d) show the result at the 10th iteration of MaxKurt. It is similar to Fig. 3-(c) as expected.

In addition, we used large-size natural scenes. 100000 samples of natural scenes of 64× 64
pixels were given asX. MaxKurt and other well-known ICA algorithms are not available
for such a large-scale problem because they require huge computation. Fig. 2-(b) shows
the decreasing curve ofφ in the large-size natural scenes. LMICA was carried out in 1000
layers, and it consumed about 69 hours with Intel 2.8GHz CPU. It shows that LMICA
rapidly decreased in the first 20 layers and converged around the 500th layer. It verifies
that LMICA is quite efficient in the analysis of large-size natural scenes. Fig. 4 shows
some edge detectors generated at the 1000th layer. It is interesting that some “compound”
detectors such as a “cross” were generated in addition to simple “long-edge” detectors. In
a famous previous work [13] which applied ICA and PCA to small-size natural scenes,
symmetric global edge detectors similar to our “compound” ones could be generated by
PCA which manages only the second-order statistics. On the other hand, asymmetric local
edge detectors similar to our simple “long-edge” ones could not be generated by PCA and
could be extracted by ICA utilizing the higher-order statistics. In comparison with it, our
LMICA could extract various local and global detectors simultaneously from large-size
natural scenes. Besides, it is expected from the results for small-size images (see Fig. 3)
that other various detectors are generated at each layer. In summary, those results show
that LMICA can extract quite many useful and various detectors from large-size natural
scenes efficiently. It is also interesting that there was a plateau in the neighborhood of the
10th layer. It suggests that large-size natural scenes may be generated by two different
generative models. But, the close inspection is beyond the scope of this paper.

4 Conclusion

In this paper, we proposed the linear multilayer ICA algorithm (LMICA). We carried out
some numerical experiments on natural scenes, which verified that LMICA can find out the
approximations of independent components quite efficiently and it is applicable to large
problems. We are now analyzing the results of LMICA in large-size natural scenes of 64
× 64 pixels, and we are planning to apply this algorithm to quite large-scale images such
as the ones of256× 256 pixels. We are also planning to utilize LMICA in the data mining



Table 1: Calculation time with the values of the contrast functionφ (Eq. (12)): They are the
averages over 10 runs at the 10th layer (approximation) and the 720th layer (convergence)
in LMICA (the normal one and the one without the mapping phase). In addition, those of
10 iterations in MaxKurt (approximately corresponding toL = 10× 72 = 720) are shown.
They were calculated in Intel 2.8GHz CPU.

LMICA LMICA without mapping MaxKurt (10 iterations)
10thlayer 22sec.(4.91) 9.3sec.(17.6) -
720thlayer 1600sec.(4.57) 670sec.(4.57) 940sec.(4.57)

of quite high-dimensional data space, such as the text mining. In addition, we are trying to
find out the pre-whitening method suitable for LMICA. Some normalization techniques in
the local-ICA phase may be promising.
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(a). for small-size images. (b). for large-size images.

Figure 2: Decreasing curve of the contrast functionφ along the number of layers (in log-
scale): (a). It is for small-size natural scenes of 12× 12 pixels. The normal and dotted
curves show the decreases ofφ by LMICA and the one without the mapping phase (random
mapping), respectively. The cross points show the results of MaxKurt. Each iteration in
MaxKurt approximately corresponds to 72 layers with respect to the times of the optimiza-
tions for the pairs of signals. (b). It is for large-size natural scenes of 64× 64 pixels. The
curve displays the decrease ofφ by LMICA in 1000 layers.

(a). at 20th layer. (b). at 100th layer. (c). at 720th layer. (d). MaxKurt.

Figure 3: Representative edge detectors from natural scenes of 12× 12 pixels: (a). It
displays the basis vectors generated by LMICA at the 20th layer. (b). at the 100th layer.
(c). at the 720th layer. (d). It shows the ones after 10 iterations of MaxKurt algorithm.

Figure4: Representative edge detectors from natural scenes of 64× 64 pixels.


