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Abstract

We propose a new interpretation of spiking neurons as Bayesian integra-
tors accumulating evidence over time about events in the external world
or the body, and communicating to other neurons their certainties about
these events. In this model, spikes signal the occurrence of new infor-
mation, i.e. what cannot be predicted from the past activity. As a result,

firing statistics are close to Poisson, albeit providing a deterministic rep-

resentation of probabilities. We proceed to develop a theory of Bayesian
inference in spiking neural networks, recurrent interactions implement-

ing a variant of belief propagation.

Many perceptual and motor tasks performed by the central nervous system are probabilis-
tic, and can be described in a Bayesian framework [4, 3]. A few important but hidden
properties, such as direction of motion, or appropriate motor commands, are inferred from
many noisy, local and ambiguous sensory cues. These evidences are combined with priors
about the sensory world and body. Importantly, because most of these inferences should
lead to quick and irreversible decisions in a perpetually changing world, noisy cues have to
be integrated on-line, but in a way that takes into account unpredictable events, such as a
sudden change in motion direction or the appearance of a new stimulus.

This raises the question of how this temporal integration can be performed at the neural
level. It has been proposed that single neurons in sensory cortices represent and compute
the log probability that a sensory variable takes on a certain valulks fggual motion in

the neuron’s preferred direction?) [9, 7]. Alternatively, to avoid normalization issues and
provide an appropriate signal for decision making, neurons could represent the log proba-
bility ratio of a particular hypothesis (g motion more likely to be towards the right than
towards the left) [7, 6]. Log probabilities are convenient here, since under some assump-
tions, independent noisy cues simply combine linearly. Moreover, there are physiological
evidence for the neural representation of log probabilities and log probability ratios [9, 6, 7].

However, these models assume that neurons represent probabilities in their firing rates. We
argue that it is important to study how probabilistic information are encoded in spikes.
Indeed, it seems spurious to marry the idea of an exquisite on-line integration of noisy cues
with an underlying rate code that requires averaging on large populations of noisy neurons
and long periods of time. In particular, most natural tasks require this integration to take
place on the time scale of inter-spike intervals. Spikes are more efficiently signaling events
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thananalog quantities. In addition, a neural theory of inference with spikes will bring us
closer to the physiological level and generate more easily testable predictions.

Thus, we propose a new theory of neural processing in which spike trains prodiele a
terministic online representation of a log-probability ratio. Spikes sigrelents eg that

the log-probability ratio has exceeded what could be predicted from previous spikes. This
form of coding was loosely inspired by the idea of "energy landscape” coding proposed
by Hinton and Brown [2]. However, contrary to [2] and other theories using rate-based
representation of probabilities, this model is self-consistent and does not require different
models for encoding and decoding: As output spikes provide new, unpredictable, tempo-
rally independent evidence, they can be used directly as an input to other Bayesian neurons.

Finally, we show that these neurons can be used as building blocks in a theory of approx-
imate Bayesian inference in recurrent spiking networks. Connections between neurons
implement an underlying Bayesian network, consisting of coupled hidden Markov models.
Propagation of spikes is a form of belief propagation in this underlying graphical model.

Our theory provides computational explanations of some general physiological properties
of cortical neurons, such as spike frequency adaptation, Poisson statistics of spike trains,
the existence of strong local inhibition in cortical columns, and the maintenance of a tight
balance between excitation and inhibition. Finally, we discuss the implications of this
model for the debate about temporal versus rate-based neural coding.

1 Spikes and log posterior odds

1.1 Synaptic integration seen as inference in a hidden Markov chain

We propose that each neuron codes for an underlying "hidden” binary variablghose
state evolves over time. We assume thatlepends only on the state at the previous time
step,x;—q:, and is conditionally independent of other past states. The staten switch

from O to 1 with a constant rate,, = é limg o P(z; = 1|x4—q = 0), and from 1 to

0 with a constant rate,s. For example, these transition rates could represent how often
motion in a preferred direction appears the receptive field and how long it is likely to stay
there.

The neuron infers the state of its hidden variable fl¥moisy synaptic inputs, considered

to be observationsof the hidden state. In this initial version of the model, we assume

that these inputs are conditionally independent homogeneous Poisson processes, synapse
i emitting a spike between timeandt + dt (si = 1) with constant probability’  dt if

z; = 1, and another constant probabilityj; dt if z; = 0. The synaptic spikes are assumed

to be otherwise independent of previous synaptic spikes, previous states and spikes at other
synapses. The resulting generative model is a hidden Markov chain (figure 1-A).

However, rather thaestimatingthe state of its hidden variable and communicating this
estimate to other neurons (for example by emitting a spike when sensory evidence for
x; = 1 goes above a threshold) the neuron reports and communicatestéstythat the
current state id. This certainty takes the form of the log of the ratio of the probability
that the hidden state is 1, and the probability that the state is 0, given all the synaptic inputs
received so farL; = log(%). We usesy_,; as a short hand notation for tié
synaptic inputs received at presamid in the past. We will refer to it as the log odds ratio.
Thanks to the conditional independencies assumed in the generative model, we can com-
pute this Log odds ratio iteratively. Taking the limitésgoes to zero, we get the following
differential equation:

L=ry, (1 + e*L) — Toff (1 + eL) +> wid(st —1) — 6
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Figurel: A. Generative model for the synaptic input. B. Schematic representation of log
odds ratio encoding and decoding. The dashed circle represents both eventual downstream
elements and the self-prediction taking platgdethe model neuron. A spike is fired only
when L; exceedsr;. C. One example trial, where the state switches ffotm 1 (shaded

area) and back t0. plain: L., dotted: G;. Black stripes at the top: corresponding spikes
train. D. Mean Log odds ratio (dark line) and mean output firing rate (clear line). E. Output
spike raster plot (1 line per trial) and ISI distribution for the neuron shown is C. and D.
Clear line: ISI distribution for a poisson neuron with the same rate.

w;, the synaptic weight, describe how informative synafisebout the state of the hidden
variable,e.g. w; = log(qém ) Each synaptic spike {s= 1) gives an impulse to the log

4
odds ratio, which is positif\f/e if this synapse is more active when the hidden state if 1 (i.e it
increases the neuron’s confidence that the state is 1), and negative if this synapse is more

active whene; = 0 (i.e it decreases the neuron’s confidence that the state is 1).

The bias,0, is determined by how informative it isot to receive any spikeg.g. 6 =
> 46n — 4+ By convention, we will consider that the "bias” is positive or zero (if not,
we need simply to invert the status of the state

1.2 Generation of output spikes

The spike train should convey a sparse representatidn, o that each spike reporigw
informationabout the state, that is not redundant with that reported by other, preceding,
spikes. This proposition is based on three arguments: First, spikes, being metabolically
expensive, should be kept to a minimum. Second, spikes conveying redundant information
would require a decoding of the entire spike train, whereas independent spike can be taken
into account individually. And finally, we seek a self consistent model, with the spiking
output having a similar semantics to its spiking input.

To maximize the independence of the spikes (conditioned,hrwe propose that the neu-

ron fires only when the difference between its log odds ratiand apredictionG, of this

log odds ratio based on the output spikes emitted so far reaches a certain threshold. Indeed,
supposing that downstream elements predigtas best as they can, the neuron only needs

to fire when it expects that prediction to be too inaccurate (figure 1-B). In practice, this



will happen when the neuron receives new evidencefet 1. GG; should thereby follow
the same dynamics ds when spikes are not received. The equationdpand the output
O; (O, = 1 when an output spike is fired) are given by:

G = ro (1 + eiL) — Toff (1 + eL) + 9,0(0y — 1) Q)
O; = 1l.whenL; > G;+ %, 0 otherwise (2)

Here g,, a positive constant, is the only free parameter, the other parameters being con-
strained by the statistics of the synaptic input.

1.3 Results

Figure 1-C plots a typical trial, showing the behavioi o7 andO before, during and after
presentation of the stimulus. As random synaptic inputs are integratéidctuates and
eventually exceedS + 0.5, leading to an output spike. Immediately after a sptkgumps

to G + g,, which prevents (except in very rare cases) a second spike from immediately
following the first. Thus, this "jump” implements a relative refractory period. However,
G decays as it tends to converge back to its stable level. = log(f,gg). Thus L
eventually exceed§ again, leading to a new spike. This threshold crossing happens more
often during stimulation (z= 1) as the net synaptic input alters to create a higher overall
level of certainty,L;.

Mean Log odds ratio and output firing rate

The mean firing raté, of the Bayesian neuron during presentation of its preferred stimulus
(i.e. whenx, switches from O to 1 and back to 0) is plotted in figure 1-D, together with the
mean log posterior ratid.,,, both averaged over trials. Not surprisingly, the log-posterior
ratio reflects the leaky integration of synaptic evidence, with an effective time constant that
depends on the transition probabilities, .. If the state is very stable {x = rog ~ 0),
synaptic evidence is integrated over almost infinite time periods, the mean log posterior
ratio tending to either increase or decrease linearly with time. In the example in figure 1-
D, the state is less stable, so "old” synaptic evidence are discountel, aadurates.

In contrast, the mean output firing raf® tracks the state of, almost perfectly. This
is because, as a form of predictive coding, the output spikes refleateivesynaptic
evidence,I; = Y, 4(si — 1) — 6, rather than the log posterior ratio itself. In partic-
ular, the mean output firing rate is a rectified linear function of the mean impug.

_ 15 ; +
O = gjj = |:Zz wiqon(off) — 9
Analogy with a leaky integrate and fire neuron

We can get an interesting insight into the computation performed by this neuron by lineariz-
ing L andG around their mean levels over trials. Here we reduce the analysis to prolonged,
statistically stable periods when the state is constant (either ON or OFF). In this case, the
mean level of certainty, and its output predictioty are also constant over time. We make

the rough approximation that the post spike jump,and the input fluctuations are small
compared to the mean level of certairty

RewritingV; = L; — G; + % asthe "membrane potential” of the Bayesian neuron:
V=—kiV+I A, — g,0;

wherek; = Tone_j: —|—Toff€f’, the "leak” of the membrane potential, depends on the overall
level of certainty.A, is positive and a monotonic increasing functiorygf
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Figure2: A. Bayesian causal network fgy (tiger), z} (stripes) andc? (paws). B. A net-
work feedforward computing the log posterior fof. C. A recurrent network computing
the log posterior odds for all variables. D. Log odds ratio in a simulated trial with the net-
work in C (see text). Thick lineZ”, thin line: Lfl, dash-dottede1 without inhibition.

Insert:LgE2 averaged over trials, showing the effect of feedback.

The linearized Bayesian neuron thus acts in its stable regime as a leaky integrate and fire
(LIF) neuron. The membrane potentidl integrates its input/, = I, — A, , with a leak

kz. The neuron fires when its membrane potential reaches a constant threshalter

each spikesl; is reset ta).

Interestingly, for appropriately chosen compression fagtorthe mean input to the lin-
earized neuro/ = I — A, ~ 0 1. This means that the membrane potential is purely
driven to its threshold by mput quctuatlons or a random walk in membrane potential. As

a consequence, the neuron’s firing will be memoryless, and close to a Poisson process. In
particular, we found Fano factor close to 1 and quasi-exponential I1SI distribution (figure 1-
E) on the entire range of parameters tested. Indeed, LIF neurons with balanced inputs have
been proposed as a model to reproduce the statistics of real cortical neurons [8]. This bal-
ance is implemented in our model by the neuron’s effective self-inhibition, even when the
synaptic input itself is not balanced.

Decoding

As we previously said, downstream elements could predict the log odd</ralip com-
puting G; from the output spikes (Eq 1, fig 1-B). Of course, this requires an estimate of
the transition probabilities,,, r.¢, that could be learned from the observed spike trains.

However, we show next that explicit decoding is not necessary to perform bayesian infer-
ence in spiking networks. Intuitively, this is because the quantity that our model neurons
receive and transmiggnew information, is exactly what probabilistic inference algorithm
propagate between connected statistical elements.

Even if ¢, is not chosen optimally, the influence of the ddfis usually negligible compared to
the large fluctuations in membrane potential.



2 Bayesian inference in cortical networks

The model neurons, having the same input and output semantics, can be used as build-
ing blocks to implement more complex generative models consisting of coupled Markov
chains. Consider, for example, the example in figure 2-A. Here, a "parent” varidble

(the presence of a tiger) can cause the state ather "children” variables {{F].—2. ),

of whom two are represented (the presence of strigesnd motion,z?). The "chil-

dren” variables are Bayesian neurons identical to those described previously. The resulting
bayesian network consist af+ 1 coupled hidden Markov chains. Inference in this archi-
tecture corresponds to computing the log posterior odds ratio for the tigeandthe log
posterior of observing strlpes or motlorfuci(],C 2...n), given the synaptic inputs received

by theentirenetwork so far, i.es3_,,...,sf_,.

Unfortunately, inference and learning in this network (and in general in coupled Markov
chains) requires very expensive computations, and cannot be performed by simply propa-
gating messages over time and among the variable nodes. In particular, the state of a child
variablez} depends om*_,,, s¥, 2} andthe state of all other children at the previous

time step,[xtfdt]qudiz. In contrast, our network can only implement pairwise interac-
tions, a connection between two spiking neurons implementing the conditional probability
linking the two corresponding binary variables.

Thus, we need to assume additional conditional independencies between the nodes in the
generative model, so that their joint probability can be pairwise factorized: x;_1) =

2 [1; o(at, a) T1; o(xi, ;). In words, it means that variables bias each other’s prob-
abilities, but do not influence each other’s dynamics, i.e they do not affect each other’s
transition probabilities. For example, a tiger does not affect the probability that stripes
appear or disappear, but increases their probability of being present.

Naive implementation

In this restricted case, marginal posterior probabilities can be computed iteratively by prop-
agating beliefs in time and between the variables, or, in our model, by propagating spikes
in a neural network. This is because the probability of a variailean be directly up-
dated by the conditional probability of observing the synaptic input to another connected
neuron,s, egp(s;|zf) = 3,1 p(si|o)p(at|y), marginalizing out the hidden staté. Of
course, rather than using, we useO!, the output of the Bayesian neuron coding for
As we said previously, this output directly represents the new synaptic evidence received
by neuroni. The resulting equation is identical to the one derived previously for poisson
input,
k k

L = fiu(L) + 3, wid(Of — 1) — by
where fi.(z) = 7k (1 + e%) — r¥;(1 + ). As previously,w;, the synaptic weight,
describes how mformatlve it is for neurdnto receive a spike from neuron (or synapse)

I, wy, = log(W) while 0 is how informative it is not to receive a spike,

O =dty", P(O! = 1]zf = 1) — P(O! = 1]z} =0).

This shows that our model is self-consistent. Except at the first stage of processing (eg
the retina), all inputs are proposed to come from other Bayesian neurons.

Results

We implemented these update rules in a spiking neural network (figure 2-B) representing
the generative model in figure 2-A, with 100 possible childrenifhr We first consider

the case where there is no feedback connections, meaningthat 0 for all k. In this

case the network computes the probability of a tiger at tinigtegrating multiple sensory
cues such as the presence of stripes or motion in the visual scene.



In the example trials plotted in figure 2-D, we fixed the state ofindz?: the tiger and

the stripes are present in the shaded temporal window, and absent outside of it. We then
sample the states of the other children (i.e is there motion or not?) and the corresponding
"observed” synaptic inputs‘@tmx, from the generative model. Once this synaptic input
has been generated, it is used as an input to the network in figure 2-B. What is plotted in
the Log odds ratio for the tigef,;* and the stripesl.;*, as a function of time. As we can

see, the stripes receive very noisy synaptic input and can only provide weak evidence that
they are present. However, the tiger neuron is able to combine inputs from its 100 children
and get a much higher certainty.

Unfortunately, bayesian inference in this feedforward network is incomplete: The presence
of a tiger affects the probability of stripes, not only the other way round. To implement
this, we also need feedback connectiang,. The network with feedforward and feedback
processing fails miserably, given that its activity explode, as illustrated in figure 2-D.

Balanced excitation/inhibition

This failure is due to the presence of loops, whereby a spike from nduiooreases

the certainty of neurorl (and its probability of firing) bywy;, and a spike from
neuron/ increases in turn the certainty of neurénby w;,. These loops result in
spikes reverberating through the network, ad infinitum, without reporting new infor-
mation, a phenomena akin to loopy belief propagation [10]. To avoid overcounting of
evidence, we thus have to discount the reverberated "old evidence” from the synaptic input:

= = fk(Lmk) + 22 wd(0F = 1) = 32 wwikd(OF_ g, — 1) — by

We implemented this discounting using inhibitory neurons recurrently connected to each
excitatory neuron (figure 2-C). The inhibitory neurons are usegreédictthe redundant
feedback a bayesian neuron will receive and substract this prediction so that, once again,
only new informatiorare taken into account and communicated to other neurons. Each
excitatory loop is compensated by an inhibitory loop, resulting in a balance between
excitation and inhibition at the level of each neuron within the network.

The result on one trial is plotted in figure 2-D. The "tiger” log odds ratio is almost indis-
tinguishable from the feedforward case, and is not plotted. The "stripes” Log odds ratio
increases during presentation of the tiger due to the feedback. In other words, the stripes
neuron can take into account no only its own its own synaptic input, but also the synaptic
input to the other children neurons (such as evidence for motion), thanks to the presence of
a common source (the tiger).

Over many trials, we found that the statistics of the bayesian neuron were still poisson,
and their output firing is still a rectified linear function of the input firing rate in a stable
statistical regime, i.e0* = [>°, wy, O']*.

Discussion

We started from an interpretation of synaptic integration in single neurons as a form of
inference in a hidden Markov chain. We derived a model of spiking neurons and their
interactions able to compute the marginal posterior probabilities of sensory and motor vari-
ables given evidence receivéd the entire network. In this view, the brain implements

an underlying bayesian network in an interconnected neural architecture, with conditional
probabilities represented by synaptic weights. The model makes a rich set of predictions
for the general properties of neuron and synaptic dynamics, such as a time constant that
depends on the overall level of inputs, specific forms of frequency dependant spike and
synaptic adaptation (not shown here) and micro-balanced excitation and inhibition. How-
ever, it is still restricted to probabilistic computations involving binary variables. In a



relatedwork similar ideas are applied population encoding of log probability distribution
for analog variables (Zemel, Huys and Dayan, submitted to NIPS 2004).

Despite non-linear processing at the single neural level, the emerging picture is relatively
simple: The neuron acts as a leaky integrate and fire neuron driven by noise. The output
firing rate is a rectified weighted sum of the input firing rates, while the firing statistics are
Poisson. However, these output spike trains adetarministicfunction of the input spike
trains. Spikes report fluctuations in the level of certaihiyt could not be predicteeither

from the stability of its stimulus (contribution froi,) or the loops in the network (contri-
bution from the inhibitory neuron). Thus firing will be, by definition, unpredictable. This
last observation leads us to suggest that the irregular firing and Poisson statistics observed
in cortical neurons [1] arises as a direct consequence of the random fluctuations in the sen-
sory inputs and the instability of the real word, but am due to unreliable or "chaotic”
neural processing.

Finally, it is crucial for the biological realism of the model to find adaptive neural dynamics
and synaptic plasticity able to learn the parameters of the internal model and conditional
probabilities, and we are currently exploring these issues. Fortunately, the required learning
rules are local and unsupervised. According to our preliminary work, the synaptic weights
and bias depend on the joint probability of presynaptic/postsynaptic spikes and can be
learned with the spike time dependent plasticity observed in hippocampus and cortex [5].
Meanwhile, the transition probabilities simply correspond to how often the neuron switches
between an active and an inactive state.
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