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Abstract

We introduce a new algorithm based on linear programming that
approximates the differential value function of an average-cost
Markov decision process via a linear combination of pre-selected
basis functions. The algorithm carries out a form of cost shaping
and minimizes a version of Bellman error. We establish an error
bound that scales gracefully with the number of states without
imposing the (strong) Lyapunov condition required by its counter-
part in [6]. We propose a path-following method that automates
selection of important algorithm parameters which represent coun-
terparts to the “state-relevance weights” studied in [6].

1 Introduction

Over the past few years, there has been a growing interest in linear programming
(LP) approaches to approximate dynamic programming (DP). These approaches
offer algorithms for computing weights to fit a linear combination of pre-selected
basis functions to a dynamic programming value function. A control policy that is
“greedy” with respect to the resulting approximation is then used to make real-time
decisions.

Empirically, LP approaches appear to generate effective control policies for high-
dimensional dynamic programs [1, 6, 11, 15, 16]. At the same time, the strength
and clarity of theoretical results about such algorithms have overtaken counterparts
available for alternatives such as approximate value iteration, approximate policy
iteration, and temporal-difference methods. As an example, a result in [6] implies
that, for a discrete-time finite-state Markov decision process (MDP), if the span of
the basis functions contains the constant function and comes within a distance of e
of the dynamic programming value function then the approximation generated by a
certain LP will come within a distance of O(e). Here, the coefficient of the O(e) term
depends on the discount factor and the metric used for measuring distance, but not
on the choice of basis functions. On the other hand, the strongest results available
for approximate value iteration and approximate policy iteration only promise O(e)
error under additional requirements on iterates generated in the course of executing



the algorithms [3, 13]. In fact, it has been shown that, even when ¢ = 0, approximate
value iteration can generate a diverging sequence of approximations [2, 5, 10, 14].

In this paper, we propose a new LP for approximating optimal policies. We work
with a formulation involving average cost optimization of a possibly infinite-state
MDP. The fact that we work with this more sophisticated formulation is itself a
contribution to the literature on LP approaches to approximate DP, which have
been studied for the most part in finite-state discounted-cost settings. But we view
as our primary contributions the proposed algorithms and theoretical results, which
strengthen in important ways previous results on LP approaches and unify certain
ideas in the approximate DP literature. In particular, highlights of our contributions
include:

1. Relaxed Lyapunov Function dependence. Results in [6] suggest that
— in order for the LP approach presented there to scale gracefully to large
problems — a certain linear combination of the basis functions must be
a “Lyapunov function,” satisfying a certain strong Lyapunov condition.
The method and results in our current paper eliminate this requirement.
Further, the error bound is strengthened because it alleviates an undesirable
dependence on the Lyapunov function that appears in [6] even when the
Lyapunov condition is satisfied.

2. Restart Distribution Selection. Applying the LP studied in [6] requires
manual selection of a set of parameters called state-relevance weights. That
paper illustrated the importance of a good choice and provided intuition
on how one might go about making the choice. The LP in the current
paper does not explicitly make use of state-relevance weights, but rather,
an analog which we call a restart distribution, and we propose an automated
method for finding a desirable restart distribution.

3. Relation to Bellman-Error Minimization. An alternative approach
for approximate DP aims at minimizing “Bellman error” (this idea was
first suggested in [16]). Methods proposed for this (e.g., [4, 12]) involve
stochastic steepest descent of a complex nonlinear function. There are no
results indicating whether a global minimum will be reached or guaranteeing
that a local minimum attained will exhibit desirable behavior. In this
paper, we explain how the LP we propose can be thought of as a method
for minimizing a version of Bellman error. The important differences here
are that our method involves solving a linear — rather than a nonlinear (and
nonconvex) — program and that there are performance guarantees that can
be made for the outcome.

The next section introduces the problem formulation we will be working with. Sec-
tion 3 presents the LP approximation algorithm and an error bound. In Section 4,
we propose a method for computing a desirable reset distribution. The LP approx-
imation algorithm works with a perturbed version of the MDP. Errors introduced
by this perturbation are studied in Section 5. A closing section discusses relations
to our prior work on LP approaches to approximate DP [6, 8].

2 Problem Formulation and Perturbation Via Restart

Consider an MDP with a countable state space S and a finite set of actions A
available at each state. Under a control policy u : S — A, the system dynamics
are defined by a transition probability matrix P, € RI°I*IS| where for policies
u and @ and states x and y, (Py)ay = (Pp)ay if u(z) = u(z). We will assume



that, under each policy u, the system has a unique invariant distribution, given by
Ty () = limy_ oo (PL) s, for all z,y € S.

A cost g(x,a) is associated with each state-action pair (x,a). For shorthand, given
any policy u, we let g,(x) = g(x,u(x)). We consider the problem of computing a
policy that minimizes the average cost A\, = 71'3; Gu- Let \* = min, A, and define
the differential value function h*(x) = min, limr_, E;‘[ZtTZO(gu(xt) — A*)]. Here,
the superscript u of the expectation operator denotes the control policy and the
subscript  denotes conditioning on x¢g = x. It is easy to show that there exists
a policy u that simultaneously minimizes the expectation for every x. Further, a
policy u* is optimal if and only if u*(z) € argmin,(g(x,a) + 3 , (Pu)zyh*(y)) for
all z € S.

While in principle A* can be computed exactly by dynamic programming algorithms,
this is often infeasible due to the curse of dimensionality. We consider approximating
h* using a linear combination Zle rr¢ of fixed basis functions ¢1,...,¢0x : S —
R. In this paper, we propose and analyze an algorithm for computing weights
r € R to approximate: h* ~ 25:1 o (x)rk. Tt is useful to define a matrix
® € RISIXEK 50 that our approximation to h* can be written as ®r.

The algorithm we will propose operates on a perturbed version of the MDP. The
nature of the perturbation is influenced by two parameters: a restart probability
(1 —«a) € [0,1] and a restart distribution ¢ over the state space. We refer to the
new system as an («, ¢)-perturbed MDP. It evolves similarly with the original MDP,
except that at each time, the state process restarts with probability 1 — «a; in this
event, the next state is sampled randomly according to c. Hence, the perturbed
MDP has the same state space, action space, and cost function as the original one,
but the transition matrix under each policy u are given by P, ,, = aP, + (1 —a)ec’.

We define some notation that will streamline our discussion and analysis of per-
turbed MDPs. Let mq (2) = limy—oo (PL ) yas Aaju = 7rg7ugu7 A% = miny Ay 4, and

a,u

let h} be the differential value function for the («,c¢)-perturbed MDP, and let uX
be a policy satisfying uy, () € argmin,(g(z,a) + >_, (Pa,u)aeyha(y)) for all z € S.
Finally, we will make use of dynamic programming operators Ty ,h = gy + Pouh
and Tpyh = min, Ty, h.

3 The New LP

We now propose a new LP that approximates the differential value function of a
(a, ¢)-perturbed MDP. This LP takes as input several pieces of problem data:

1. MDP parameters: g(x,a) and (P, )y forallz,y € S,a € A, u:S— A
2. Perturbation parameters: a € [0,1] and ¢: S~ [0,1] with ) c(z) = 1.
3. Basis functions: ® = [¢; - - - px] € RISI¥E,

4. Slack function and penalty: ¢ : S — [1,00) and 7 > 0.

We have defined all these terms except for the slack function and penalty, which we
will explain after defining the LP. The LP optimizes decision variables r € R¥ and
$1, 82 € R according to
minimize s1+ ns2 (1)
subject to To®r — ®r+ 51145290 >0
So Z 0.



It is easy to see that this LP is feasible. Further, if n is sufficiently large, the
objective is bounded. We assume that this is the case and denote an optimal
solution by (7, 51, §2). Though the first |S| constraints are nonlinear, each involves
a minimization over actions and therefore can be decomposed into |.4| constraints.
This results in a total of |S| x |A| + 1 constraints, which is unmanageable if the
state space is large. We expect, however, that the solution to this LP can be
approximated closely and efficiently through use of constraint sampling techniques
along the lines discussed in [7].

We now offer an interpretation of the LP. The constraint T,,®r — ®r — A%, 1 > 0 is
satisfied if and only if &r = h’ 4 x1 for some £ € R. Terms (s; +A%)1 and s21) can
be viewed as cost shaping. In particular, they effectively transform the costs g(z, a)
to g(x,a) + s1 + A5 + satp(x), so that the constraint T, &r — &r — A%1 > 0 can be
met.

The LP can alternatively be viewed as an efficient method for minimizing a form
of Bellman error, as we now explain. Suppose that s; = 0. Then, minimization
of s1 corresponds to minimization of || min(7T,®r — ®&r — A% 1,0)|/, which can be
viewed as a measure of (one-sided) Bellman error. Measuring error with respect
to the maximum norm is problematic, however, when the state space is large. In
the extreme case, when there is an infinite number of states and an unbounded cost
function, such errors are typically infinite and therefore do not provide a meaningful
objective for optimization. This shortcoming is addressed by the slack term sg1).
To understand its role, consider constraining s; to be —A} and minimizing s5. This
corresponds to minimization of || min(7®r — ®r — A% 1,0)|[s,1 /4, Where the norm
is defined by [|h|oc,1/4 = max, [h(z)|/¢(z). This term can be viewed as a measure
of Bellman error with respect to a weighted maximum norm, with weights 1/v(x).
One important factor that distinguishes our LP from other approaches to Bellman
error minimization [4, 12, 16] is a theoretical performance guarantee, which we now
develop.

For any 7, let uq,(z) € argming(gu(z) + (Pa,u®r)(z)). Let 7o, = Tau,.,
Let Aoy = 72, 9u.,. The following theorem establishes that the difference be-
tween the average cost A, associated with an optimal solution (7,$1,32) to
the LP and the optimal average cost A} is proportional to the minimal er-
ror that can be attained given the choice of basis functions. A proof of this
theorem is provided in the appendix of a version of this paper available at
http://www.stanford.edu/ bvr/psfiles/LPnips04.pdf.

Theorem 3.1. Ifn > (2 — a)wgﬁuzw then

(1+ B)npmax(6,1)

Aai = Ay < T min g = Orlloo,1/p,
where
| Pauhlloo,1
g = maX||Pa7uHoo’1/w = max — 2 1% /Y /v
u v hlleo,1/y

ng(Ta(I)f —Pr+ 51+ 521/))
CT(Taq)f —Or+ 51+ 52’(/}) ’

The bound suggests that the slack function v should be chosen so that the basis
functions can offer a reasonably sized approximation error ||h}, — ®7|o 1/p. At
the same time, this choice affects the sizes of 7 and . The theorem requires that
the penalty n be at least (2 — a)7l, 1. The term 7Tg;u2¢ is the steady-state
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expectation of the slack function under an optimal policy. Note that

(Pa,uw)(x)
V()

which is the maximal factor by which the expectation of 1 can increase over a single
time period. When dealing with specific classes of problems it is often possible to
select 9 so that the norm [|h}, — ®7||o 1/ as well as the terms max, || Pa,ulloo,1/4

and 71 4 scale gracefully with the number of states and/or state variables. This

QU *

issue will be addressed further in a forthcoming full-length version of this paper.

B < max || Po,u¥|oc,1/4 = max
o u,T

It may sometimes be difficult to verify that any particular value of n dominates
(2— a)wg,uw*w‘ One approach to selecting 7 is to perform a line search over possible
values of 7, solving an LP in each case, and choosing the value of 1 that results in
the best-performing control policy. A simple line search algorithm solves the LP
successively for n = 1,2,4,8, ..., until the optimal solution is such that §o = 0. It
is easy to show that the LP is unbounded for all n < 1, and that there is a finite
71 = inf{n|52 = 0} such that for each n > 7, the solution is identical and 55 = 0.
This search process delivers a policy that is at least as good as a policy generated
by the LP for some n € [(2 — Oé)ﬂ'g;ualb, 2(2 — oz)ﬂ'g’uaz/}], and the upper bound of
Theorem 3.1 would hold with 7 replaced by 2(2 — a)wgﬁu;

We have discussed all but two terms involved in the bound: 6 and 1/(1 — «). Note
that if ¢ = 7y 7, then 6 = 1. In the next section, we discuss an approach that aims
at choosing c to be close enough to 7, 7 so that 6 is approximately 1. In Section
5, we discuss how the reset probability 1 — « should be chosen in order to ensure
that policies for the perturbed MDP offer similar performance when applied to the
original MDP. This choice determines the magnitude of 1/(1 — «).

4 Fixed Points and Path Following

The coefficient # would be equal to 1 if ¢ were equal to 7, 7. We can not to simply
choose ¢ to be equal to 7, 5, since m, # depends on 7, an outcome of the LP which
depends on c. Rather, arriving at a distribution ¢ such that ¢ = 7, 5 is a fixed point
problem. In this section, we explore a path-following algorithm for approximating
such a fixed point [9], with the aim of arriving at a value of ¢ that is close to one.

Consider solving a sequence indexed by i = 1,..., M of («;,¢;)-perturbed MDPs.
Let 7 denote the weight vector associated with an optimal solution to the LP (1)
with perturbation parameters (a;,¢;). Let ay = 0 and ;41 = a; + 6 for i > 1,
where ¢ is a small positive step size. For any initial choice of c1, we have ¢; = 7, 51,
since the system resets in every time period. For ¢ > 1, let ¢;41 = 7y, 7. One might
hope that the change in c; is gradual, and therefore, ¢; ~ 7, # for each .

We can not yet offer rigorous theoretical support for the proposed path following
algorithm. However, we will present promising results from a simple computational
experiment. This experiment involves a problem with continuous state and action
spaces. Though our main result — Theorem 3.1 — applies to problems with countable
state spaces and finite action spaces, there is no reason why the LP cannot be applied
to broader classes of problems such as the one we now describe. Consider a scalar
state process xyy1 = x¢ + a; + w;, driven by scalar actions a; and a sequence w;
i.i.d. zero-mean unit-variance normal random variables. Consider a cost function
g(z,a) = (x — 2)% + a®. We aim at approximating the differential value function
using a single basis function ¢(z) = 2. Hence, (®r)(x) = ra?, with r € R. We will
use a slack function ¥ (z) = 1 + 2% and penalty n = 5. The special structure of this



problem allows for exact solution of the LP (1) as well as the exact computation
of the parameter 6, though we will not explain here how this is done. Figure 1
plots @ versus «, as « is increased from 0 to 0.99, with c initially set to a zero-mean
normal distribution with variance 4. The three curves represent results from using
three different step sizes § € {0.01,0.005,0.0025}. Note that in all cases, 6 is very
close to 1. Smaller values of § resulted in curves being closer to 1: the lowest curve
corresponds to § = 0.01 and the highest curve corresponds to § = 0.0025.
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Figure 1: Evolution of § with 6 € {0.01,0.005,0.0025}.

5 The Impact of Perturbation

Some simple algebra will show that for any policy u,
)\oc,u - )‘u = (1 - a) Zat (CTP’Ligu - 71—5911,) .
t=0

When the state space is finite |c? P! g, — w1 g,| decays at a geometric rate. This
is also true in many practical contexts involving infinite state spaces. One might
think of m, = Y (¢ Plg, — 7l g,), as the mizing time of the policy u if the
initial state is drawn according to the restart distribution c¢. This mixing time is
finite if the differences ¢’ Plg, — w1l g, converge geometrically. Further, we have
[Aa,u — Au] = my (1 — @), and coming back to the LP, this implies that
A — A < Aai = Aaur + (1= a) (M, +max(may-, my: ).

Combined with the bound of Theorem 3.1, this offers a performance bound for the
policy uq,7 applied to the original MDP. Note that when ¢ = mq 7, in the spirit

discussed in Section 4, we have m,,, . = 0. For simplicity, we will assume in the
rest of this section that my,, . = 0 and My~ > my: , so that

A = Aur < Aai = Aagur + (1 —a)my-.

U, 7

Ua, 7

Let us turn to discuss how « should be chosen. This choice must strike a balance
between two factors: the coefficient of 1/(1 — «) in the bound of Theorem 3.1 and
the loss of (1—a)m,~ associated with the perturbation. One approach is to fix some
€ > 0 that we are willing to accept as an absolute performance loss, and then choose
a so that (1 — a)my+ < e. Then, we would have 1/(1 — &) > my,/e. Note that the
term 1/(1 — «) multiplying the right-hand-side of the bound can then be thought
of as a constant multiple of the mixing time of ©«*. An important open question is
whether it is possible to design an approximate DP algorithm and establish for that
algorithm an error bound that does not depend on the mixing time in this way.



6 Relation to Prior Work

In closing, it is worth discussing how our new algorithm and results relate to our
prior work on LP approaches to approximate DP [6, 8]. If we remove the slack
function by setting s, to zero and let s; = —(1 — a)c? ®r, our LP (1) becomes

maximize cT'or (2)
subject to min(g, + aP,®r) — &r > 0,

which is precisely the LP considered in [6] for approximating the optimal cost-to-go
function in a discounted MDP with discount factor .. Let # be an optimal solution
to (2). For any function V : & — RT, let By = a||maxy PuV||so,1/v. We call V
a Lyapunov function if By < 1. The following result can be established using an
analysis entirely analogous to that carried out in [6]:

Theorem 6.1. If 33, < 1 and ®v' =1 for some v,v’ € RE. Then,

. 200
)\a,f - )‘a < 1_—@@; rrél;%% ”ha - (I)T”OOJ/(I’“'

A comparison of Theorems 3.1 and 6.1 reveals benefits afforded by the slack func-
tion. We consider the situation where ¥» = ®v, which makes the bounds directly
comparable. An immediate observation is that, even though v and ®v play analo-
gous roles in the bounds, % is not required to be a Lyapunov function. In this sense,
Theorem 3.1 is stronger than Theorem 6.1. Moreover, if n = ngu(: 1, we have

cl'ov
1-pv
Hence, the first term — which appears in the bound of Theorem 6.1 — grows with the

largest mixing time among all policies, whereas the second term — which appears in
the bound of Theorem 3.1 — only depends on the mixing time of an optimal policy.

IL =c"(I—aP,:)" " <maxc" (I —aP,) '®v <
— u

As discussed in [6], appropriate choice of ¢ — there referred to as the state-relevance
weights — can be important for the error bound of Theorem 6.1 to scale well with the
number of states. In [8], it is argued that some form of weighting of states in terms
of a metric of relevance should continue to be important when considering average
cost problems. An LP-based algorithm is also presented in [8], but the results are
far weaker than the ones we have presented in this paper, and we suspect that the
that LP-based algorithm of [8] will not scale well to high-dimensional problems.

Some guidance is offered in [6] regarding how ¢ might be chosen. However, this
is ultimately left as a manual task. An important contribution of this paper is
the path-following algorithm proposed in Section 4, which aims at automating an
effective choice of c.
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