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Abstract

We abstract out the core search problem of active learning schemes, to
better understand the extent to which adaptive labeling can improve sam-
ple complexity. We give various upper and lower bounds on the number
of labels which need to be queried, and we prove that a popular greedy
active learning rule is approximately as good as any other strategy for
minimizing this number of labels.

1 Introduction

An increasingly common phenomenon in classification tasks is that unlabeled data is abun-
dant, whereas labels are considerably harder to come by. Genome sequencing projects, for
instance, are producing vast numbers of peptide sequences, but reliably labeling even one
of these with structural information requires time and close attention.

This distinction between labeled and unlabeled data is not captured in standard models like
the PAC framework, and has motivated the field of active learning, in which the learner
is able to ask for the labels of specific points, but is charged for each label. These query
points are typically chosen from an unlabeled data set, a practice called pool-based learning
[10]. There has also been some work on creating query points synthetically, including a
rich body of theoretical results [1, 2], but this approach suffers from two problems: first,
from a practical viewpoint, the queries thus produced can be quite unnatural and therefore
bewildering for a human to classify [3]; second, since these queries are not picked from the
underlying data distribution, they might have limited value in terms of generalization. In
this paper, we focus on pool-based learning.

We are interested in active learning with generalization guarantees. Suppose the hypothesis
class has VC dimension d and we want a classifier whose error rate on distribution P over
the joint (input, label) space, is less than ε > 0. The theory tells us that in a supervised
setting, we need some m = m(ε, d) labeled points drawn from P (for a fixed level of
confidence, which we will henceforth ignore). Can we get away with substantially fewer
than m labels if we are given unlabeled points from P and are able to adaptively choose
which points to label? How much fewer, and what querying strategies should we follow?

Here is a toy example illustrating the potential of active learning. Suppose the data lie on
the real line, and the classifiers are simple thresholding functions, H = {hw : w ∈ R}:

hw(x) = 1(x ≥ w).

VC theory tells us that if the underlying distribution P can be classified perfectly by some
hypothesis in H (called the realizable case), then it is enough to draw m = O(1/ε) random



labeled examples from P , and to return any classifier consistent with them. But suppose
we instead draw m unlabeled samples from P . If we lay these points down on the line,
their hidden labels are a sequence of 0’s followed by a sequence of 1’s, and the goal is to
discover the point w at which the transition occurs. This can be accomplished with a simple
binary search which asks for just log m labels. Thus active learning gives us an exponential
improvement in the number of labels needed: by adaptively querying log m labels, we can
automatically infer the rest of them.

Generalized binary search?

So far we have only looked at an extremely simple learning problem. For more complicated
hypothesis classes H , is a sort of a generalized binary search possible? What would the
search space look like? For supervised learning, in the realizable case, the usual bounds
specify a sample complexity of (very roughly) m ≈ d/ε labeled points if the target error
rate is ε. So let’s pick this many unlabeled points, and then try to find a hypothesis con-
sistent with all the hidden labels by adaptively querying just a few of them. We know via
Sauer’s lemma that H can classify these m points (considered jointly) in at most O(md)
different ways – in effect, the size of H is reduced to O(md). This finite set is the effective
hypothesis class Ĥ . (In the 1-d example, Ĥ has size m + 1, corresponding to the intervals
into which the points xi split the real line.) The most we can possibly learn about the target
hypothesis, even if all labels are revealed, is to narrow it down to one of these regions. Is it
possible to pick among these O(md) possibilities using o(m) labels? If binary search were
possible, just O(d log m) labels would be needed.

Unfortunately, we cannot hope for a generic positive result of this kind. The toy example
above is a 1-d linear separator. We show that for d ≥ 2, the situation is very different:

Pick any collection of m (unlabeled) points on the unit sphere in R
d,

for d ≥ 2, and assume their hidden labels correspond perfectly to some
linear separator. Then there are target hypotheses in Ĥ which cannot be
identified without querying all the labels.

(What if the active learner is not required to identify exactly the right hypothesis, but some-
thing close to it? This and other little variations don’t help much.) Therefore, even in the
most benign situations, we cannot expect that every target hypothesis will be identifiable
using o(m) labels. To put it differently, in the worst case over target hypotheses, active
learning gives no improvement in sample complexity.

But hopefully, on average (with respect to some distribution over target hypotheses), the
number of labels needed is small. For instance, when d = 2 in the bad case above, a
target hypothesis chosen uniformly at random from Ĥ can be identified by querying just
O(log m) labels in expectation. This motivates the main model of this paper.

An average-case model

We will count the expected number of labels queried when the target hypothesis is chosen
from some distribution π over Ĥ . This can be interpreted as a Bayesian setting, but it is
more accurate to think of π merely as a device for averaging query counts, which has no
bearing on the final generalization bound. A natural choice is to make π uniform over Ĥ .

Most existing active learning schemes work with H rather than Ĥ; but Ĥ reflects the
underlying combinatorial structure of the problem, and it can’t hurt to deal with it directly.
Often π can chosen to mask the structure of Ĥ; for instance, if H is the set of linear
separators, then Ĥ is a set of convex regions of H , and π can be made proportional to the
volume of each region. This makes the problem continuous rather than combinatorial.



What is the expected number of labels needed to identify a target hypothesis chosen from π?
In this average-case setting, is it always possible to get away with o(m) labels, where m is
the sample complexity of the supervised learning problem as defined above? We show that
the answer, once again, is sadly no. Thus the benefit of active learning is really a function
of the specific hypothesis class and the particular pool of unlabeled data. Depending on
these, the expected number of labels needed lies in the following range (within constants):

ideal case: d log m perfect binary search
worst case: m all labels, or randomly chosen queries

Notice the exponential gap between the top and bottom of this range. Is there some sim-
ple querying strategy which always achieves close to the minimum (expected) number of
labels, whatever this minimum number might be?

Our main result is that this property holds for a variant of a popular greedy scheme: always
ask for the label which most evenly divides the current effective version space weighted by
π. This doesn’t necessarily minimize the number of queries, just as a greedy decision tree
algorithm need not produce trees of minimum size. However:

When π is uniform over Ĥ , the expected number of labels needed by this
greedy strategy is at most O(ln |Ĥ|) times that of any other strategy.

We also give a bound for arbitrary π, and show corresponding lower bounds in both the
uniform and non-uniform cases.

Variants of this greedy scheme underlie many active learning heuristics, and are often de-
scribed as optimal in the literature. This is the first rigorous validation of the scheme in
a general setting. The performance guarantee is significant: recall log |Ĥ| = O(d log m),
the minimum number of queries possible.

2 Preliminaries

Let X be the input space, Y = {0, 1} the space of labels, and P an unknown underlying
distribution over X × Y . We want to select a hypothesis (a function X → Y) from some
class H of VC dimension d < ∞, which will accurately predict labels of points in X . We
will assume that the problem is realizable, that is, there is some hypothesis in H which
gives a correct prediction on every point. Suppose that points (x1, y1) . . . , (xm, ym) are
drawn randomly from P . Standard bounds give us a function m(ε, d) such that if we want
a hypothesis of error ≤ ε (on P , modulo some fixed confidence level), and if m ≥ m(ε, d),
then we need only pick a hypothesis h ∈ H consistent with these labeled points [9].

Now suppose just the pool of unlabeled data x1, . . . , xm is available. The possible labelings
of these points form a subset of {0, 1}m, the effective hypothesis class

Ĥ ∼= {(h(x1), . . . , h(xm)) : h ∈ H}.

Sauer’s lemma [9] tells us |Ĥ| = O(md). We want to pick the unique h ∈ Ĥ which is
consistent with all the hidden labels, by querying just a few of them.

Any deterministic search strategy can be represented as a binary tree whose internal nodes
are queries (“what is the xi’s label?”), and whose leaves are elements of Ĥ . We can also
accommodate randomization – for instance, to allow a random choice of query point – by
letting internal nodes of the tree be random coin flips. Our main result, Theorem 3, is
unaffected by this generalization.
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Figure 1: To identify target hypotheses like L3, we need to see all the labels.

3 Some bad news

Claim 1 Let H be the hypothesis class of linear separators in R
2. For any set of m distinct

data points on the perimeter of the unit circle, there are always some target hypotheses in
Ĥ which cannot be identified without querying all m labels.

Proof. To see this, consider the following realizable labelings (Figure 1):

• Labeling L0: all points are negative.

• Labeling Li (1 ≤ i ≤ m): all points are negative except xi.

It is impossible to distinguish these cases without seeing all the labels.1

Remark. To rephrase this example in terms of learning a linear separator with error ≤ ε,
suppose the input distribution P (X ) is a density over the perimeter of the unit circle. No
matter what this density is, there are always target hypotheses in H which force us to ask
for Ω(1/ε) labels: no improvement over the sample complexity of supervised learning.

In this example, the bad target hypotheses have a large imbalance in probability mass be-
tween their positive and negative regions. By adding an extra dimension and an extra point,
exactly the same example can be modified to make the bad hypotheses balanced.

Let’s return to the original 2-d case. Some hypotheses must lie at depth m in any query tree;
but what about the rest? Well, suppose for convenience that x1, . . . , xm are in clockwise
order around the unit circle. Then Ĥ = {hij : 1 ≤ i 6= j ≤ m} ∪ {h0, h1}, where hij

labels xi · · ·xj−1 positive (if j < i it wraps around) and the remaining points negative, and
h0, h1 are everywhere negative/positive. It is possible to construct a query tree in which
each hij lies at depth ≤ 2(m/|j − i|+ log |j − i|). Thus, if the target hypothesis is chosen
uniformly from Ĥ , the expected number of labels queried is at most

1
m(m−1)+2

{
2m +

∑
i6=j 2(m/|j − i| + log |j − i|)

}
= O(log m).

This is why we place our hopes in an average-case analysis.

1What if the final hypothesis – considered as a point in {0, 1}m – doesn’t have to be exactly right,
but within Hamming distance k of the correct one? Then a similar example forces Ω(m/k) queries.



4 Main result

Let π be any distribution over Ĥ; we will analyze search strategies according to the number
of labels they require, averaged over target hypotheses drawn from π. In terms of query
trees, this is the average depth of a leaf chosen according to π. Specifically, let T be any
tree whose leaves include the support of π. The quality of this tree is

Q(T, π) =
∑

h∈Ĥ
π(h) · (# labels needed for h) =

∑
h∈Ĥ

π(h) · leaf-depth(h).

Is there always a tree of average depth o(m)? The answer, once again, is sadly no.

Claim 2 Pick any d ≥ 2 and any m ≥ 2d. There is an input space X of size m and a
hypothesis class H of VC dimension d, defined on domain X , with the following property:
if π is chosen to be uniform over H = Ĥ , then any query tree T has Q(T, π) ≥ m/8.

Proof. Let X consist of any m points x1, . . . , xm, and let H consist of all hypotheses
h : X → {0, 1} which are positive on exactly d inputs. In order to identify a particular
element h ∈ H , any querying method must discover exactly the d points xi on which h is
nonzero. By construction, the order in which queries are asked is irrelevant – it might as
well be x1, x2, . . .. The rest is a simple probability calculation.

In our average-case model, we have seen one example in which intelligent querying results
in an exponential improvement in the number of labels required, and one in which it is
no help at all. Is there some generic scheme which always comes close to minimizing the
number of queries, whatever the minimum number might be? Here’s a natural candidate:

Greedy strategy. Let S ⊆ Ĥ be the current version space. For each
unlabeled xi, let S+

i be the hypotheses which label xi positive and S−
i

the ones which label it negative. Pick the xi for which these sets are most
nearly equal in π-mass, that is, for which min{π(S+

i ), π(S−
i )} is largest.

We show this is almost as good at minimizing queries as any other strategy.

Theorem 3 Let π be any distribution over Ĥ . Suppose that the optimal query tree requires
Q∗ labels in expectation, for target hypotheses chosen according to π. Then the expected
number of labels needed by the greedy strategy is at most 4Q∗ ln 1/(minh π(h)).

For the case of uniform π, the approximation ratio is thus at most 4 ln |Ĥ|. We also show
almost-matching lower bounds in both the uniform and non-uniform cases.

5 Analysis of the greedy active learner

5.1 Lower bounds on the greedy scheme

The greedy approach is not optimal because it doesn’t take into account the way in which a
query reshapes the search space – specifically, the effect of a query on the quality of other
queries. For instance, Ĥ might consist of several dense clusters, each of which permits
rapid binary search. However, the version space must first be whittled down to one of
these subregions, and this process, though ultimately optimal, might initially be slower at
shrinking the hypothesis space than more shortsighted alternatives. A concrete example of
this type gives rise to the following lower bound.

Claim 4 For any n ≥ 16 which is a power of two, there is a concept class Ĥn of size n
such that: under uniform π, the optimal tree has average height at most qn = Θ(log n),
but the greedy active learning strategy produces a tree of average height Ω(qn · log n

log log n
).



For non-uniform π, the greedy scheme can deviate more substantially from optimality.

Claim 5 For any n ≥ 2, there is a hypothesis class Ĥ with 2n + 1 elements and a distri-
bution π over Ĥ , such that: (a) π ranges in value from 1/2 to 1/2n+1; (b) the optimal tree
has average depth less than 3; (c) the greedy tree has average depth at least n/2.

Proofs of these lower bounds appear in the full paper, available at the author’s website.

5.2 Upper bound

Overview. The lower bounds on the quality of a greedy learner are sobering, but things
cannot get too much worse than this. Here’s the basic argument for uniform π: we show
that if the optimal tree T ∗ requires Q∗ queries in expectation, then some query must (again
in expectation) “cut off” a chunk of Ĥ of π-mass Ω(1/Q∗). Therefore, the root query of
the greedy tree TG is at least this good (cf. Johnson’s set cover analysis [8]). Things get
trickier when we try to show that the rest of TG is also good, because although T ∗ uses just
Q∗ queries on average, it may need many more queries for certain hypotheses. Subtrees
of TG could correspond to version spaces for which more than Q∗ queries are needed, and
the roots of these subtrees might not cut down the version space much...

For a worst-case model, a proof of approximate optimality is known in a related context
[6]; as we saw in Claim 1, that model is trivial in our situation. The average-case model,
and especially the use of arbitrary weights π, require more care.

Details. For want of space, we only discuss some issues that arise in proving the main
theorem, and leave the actual proof to the full paper.

The key concept we have to define is the quality of a query, and it turns out that we need this
to be monotonically decreasing, that is, it should only go down as active learning proceeds
and the version space shrinks. This rules out some natural entropy-based notions.

Suppose we are down to some version space S ⊆ Ĥ , and a possible next query is xj . If
S+ is the subset of S which labels xj positive, and S− are the ones that label it negative,
then on average the probability mass (measured by π) eliminated by xj is

π(S+)
π(S) π(S−) + π(S−)

π(S) π(S+) = 2π(S+)π(S−)
π(S) .

We say xj shrinks (S, π) by this much, with the understanding that this is in expectation.
Shrinkage is easily seen to have the monotonicity property we need.

Lemma 6 If xj shrinks (Ĥ, π) by ∆, then it shrinks (S, π) by at most ∆ for any S ⊆ Ĥ .

We would expect that if the optimal tree is short, there must be at least one query which
shrinks (Ĥ, π) considerably. More concretely, the definition of shrinkage seems to suggest
that if all queries provide shrinkage at most ∆, and the current version space has mass π(S),
then at least about π(S)/∆ more queries are needed. This isn’t entirely true, because of a
second effect: if |S| = 2, then we need just one query, regardless of π(S).

Roughly speaking, when there are lots of hypotheses with significant mass left in S, the first
effect dominates; thereafter the second takes over. To smoothly incorporate both effects,
we use the notion of collision probability. For a distribution ν over support Z , this is
CP(ν) =

∑
z∈Z ν(z)2, the chance that two random draws from ν are identical.

Lemma 7 Suppose every query shrinks (Ĥ, π) by at most ∆ > 0. Pick any S ⊆ Ĥ ,
and any query tree T whose leaves include S. If πS is the restriction of π to S (that is,
πS(h) = π(h)/π(S) for h ∈ S), then Q(T, πS) ≥ (1 − CP(πS)) · π(S)/∆.



Corollary 8 Pick any S ⊆ Ĥ and any tree T whose leaves include all of S. Then there
must exist a query which shrinks (S, πS) by at least (1 − CP(πS))/Q(T, πS).

So if the current version space S ⊆ Ĥ is such that πS has small collision probability, some
query must split off a sizeable chunk of S. This can form the basis of a proof by induction.

But what if CP(πS) is large, say greater than 1/2? In this case, the mass of some particular
hypothesis h0 ∈ S exceeds that of all the others combined, and S could shrink by just
an insignificant amount during the subsequent greedy query, or even during the next few
iterations of greedy queries. It turns out, however, that within roughly the number of itera-
tions that the optimal tree needs for target h0, the greedy procedure will either reject h0 or
identify it as the target. If it is rejected, then by that time S will have shrunk considerably.

By combining the two cases for CP(πS), we get the following lemma, which is proved in
the full paper and yields our main theorem as an immediate consequence.

Lemma 9 Let T ∗ denote any particular query tree for π, and let T be the greedily-
constructed query tree. For any S ⊆ Ĥ which corresponds to a subtree TS of T ,

Q(TS , πS) ≤ 4Q(T ∗, πS) ln
π(S)

minh∈S π(h)
.

6 Related work and promising directions

Rather than attempting to summarize the wide range of proposed active learning methods,
for instance [5, 7, 10, 13, 14], we will discuss three basic techniques upon which they rely.

Greedy search. This is the technique we have abstracted and rigorously validated in this
paper. It is the foundation of most of the schemes cited above. Algorithmically, the main
problem is that the query selection rule is not immediately tractable, so approximations are
necessary. For linear separators, Ĥ consists of convex sets, and if π is chosen to be pro-
portional to volume, query selection involves estimating volumes of convex regions, which
is tractable but (using present techniques) inconvenient. Tong and Koller [13] investigate
margin-based approximations which are efficiently computable using SVM technology.

Opportunistic priors. This is a trick in which the learner takes a look at the unlabeled
data and then places bets on hypotheses. A uniform bet over all of Ĥ leads to standard
generalization bounds. But if the algorithm places more weight on certain hypotheses (for
instance, those with large margin), then its final error bound is excellent if it guessed right,
and worse-than-usual if it guessed wrong. This technique is not specific to active learning,
and has been analyzed elsewhere (eg. [12]). One interesting line of work investigates a
flexible family of priors specified by pairwise similarities between data points, eg. [14].

Bayesian assumptions. In our analysis, although π can be seen as some sort of prior belief,
there is no assumption that nature shares this belief; in particular, the generalization bound
does not depend on it. A Bayesian assumption has an immediate benefit for active learning:
if at any stage the remaining version space (weighted by prior π) is largely in agreement
on the unlabeled data, it is legitimate to stop and output one of these remaining hypotheses
[7]. In a non-Bayesian setting this is not legitimate.

When the hypothesis class consists of probabilistic classifiers, the Bayesian assumption
has also been used in another way: to approximate the greedy selection rule using the
MAP estimate instead of an expensive summation over the posterior (eg. [11]).

In terms of theoretical results, another work which considers the tradeoff between labels
and generalization error is [7], in which a greedy scheme, realized using sampling, is ana-
lyzed in a Bayesian setting. The authors show that it is possible to achieve an exponential



improvement in the number of labels needed to learn linear separators, when both data and
target hypothesis are chosen uniformly from the unit sphere. It is an intriguing question
whether this holds for more general data distributions.

Other directions. We have looked at the case where the acceptable error rate is fixed and
the goal is to minimize the number of queries. What about fixing the number of queries and
asking for the best (average) error rate possible? In other words, the query tree has a fixed
depth, and each leaf is annotated with its remaining version space S ⊆ Ĥ . Treating each
element of S as a point in {0, 1}m (its predictions on the pool of data), the error at this leaf
depends on the Hamming diameter of S. What is a good querying strategy for producing
low-diameter leaves?

The most widely-used classifiers are perhaps linear separators. Existing active learning
schemes ignore the rich algebraic structure of Ĥ , an arrangement of hyperplanes [4].
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