
Modelling Uncertainty in the Game of Go

David H. Stern
Department of Physics
Cambridge University
dhs26@cam.ac.uk

Thore Graepel
Microsoft Research
Cambridge, U.K.

thoreg@microsoft.com

David J. C. MacKay
Department of Physics
Cambridge University

mackay@mrao.cam.ac.uk

Abstract

Go is an ancient oriental game whose complexity has defeated at-
tempts to automate it. We suggest using probability in a Bayesian
sense to model the uncertainty arising from the vast complexity
of the game tree. We present a simple conditional Markov ran-
dom field model for predicting the pointwise territory outcome of
a game. The topology of the model reflects the spatial structure of
the Go board. We describe a version of the Swendsen-Wang pro-
cess for sampling from the model during learning and apply loopy
belief propagation for rapid inference and prediction. The model
is trained on several hundred records of professional games. Our
experimental results indicate that the model successfully learns to
predict territory despite its simplicity.

1 Introduction

The game of Go originated in China over 4000 years ago. Its rules are simple (See
www.gobase.org for an introduction). Two players, Black and White, take turns
to place stones on the intersections of an N ×N grid (usually N = 19 but smaller
boards are in use as well). All the stones of each player are identical. Players place
their stones in order to create territory by occupying or surrounding areas of the
board. The player with the most territory at the end of the game is the winner. A
stone is captured if it has been completely surrounded (in the horizontal and vertical
directions) by stones of the opponent’s colour. Stones in a contiguous ‘chain’ have
the common fate property: they are captured all together or not at all [1].

The game that emerges from these simple rules has a complexity that defeats at-
tempts to apply minimax search. The best Go programs play only at the level of
weak amateur Go players and Go is therefore considered to be a serious AI challenge
not unlike Chess in the 1960s. There are two main reasons for this state of affairs:
firstly, the high branching factor of Go (typically 200 to 300 potential moves per
position) prevents the expansion of a game tree to any useful depth. Secondly, it
is difficult to produce an evaluation function for Go positions. A Go stone has no
intrinsic value; its value is determined by its relationships with other stones. Go
players evaluate positions using visual pattern recognition and qualitative intuitions
which are difficult to formalise.

Most Go programs rely on a large amount of hand-tailored rules and expert knowl-

edge [2]. Some machine learning techniques have been applied to Go with limited
success. Schraudolph, Dayan and Sejnowski [3] trained a multi-layer perceptron to
evaluate board positions by temporal difference learning. Enzenberger [4] improved
on this by structuring the topologies of his neural networks according to the rela-
tionships between stones on the board. Graepel et al. [1] made use of the common
fate property of chains to construct an efficient graph-based representation of the
board. They trained a Support Vector Machine to use this representation to solve
Go problems.

Our starting point is the uncertainty about the future course of the game that
arises from the vast complexity of the game tree. We propose to explicitly model
this uncertainty using probability in a Bayesian sense. The Japanese have a word,
aji, much used by Go players. Taken literally it means ‘taste’. Taste lingers, and
likewise the influence of a Go stone lingers (even if it appears weak or dead) because
of the uncertainty of the effect it may have in the future. We use a probabilistic
model that takes the current board position and predicts for every intersection of
the board if it will be Black or White territory. Given such a model the score of
the game can be predicted and hence an evaluation function produced. The model
is a conditional Markov random field [5] which incorporates the spatial structure of
the Go board.

2 Models for Predicting Territory

Consider the Go board as an undirected Graph G = (N , E) with N = Nx×Ny nodes
n ∈ N representing vertices on the board and edges e ∈ E connecting vertically
and horizontally neighbouring points. We can denote a position as the vector c ∈
{Black,White,Empty}N for cn = c(n) and similarly the final territory outcome
of the game as s ∈ {+1,−1}N for sn = s(n). For convenience we score from
the point of view of Black so elements of s representing Black territory are valued
+1 and elements representing white territory are valued −1. Go players will note
that we are adopting the Chinese method of scoring empty as well as occupied
intersections. The distribution we wish to model is P (s|c), that is, the distribution
over final territory outcomes given the current position. Such a model would be
useful for several reasons.

• Most importantly, the detailed outcomes provide us with a simple evalua-
tion function for Go positions by the expected score, u(c) := 〈

∑

i si〉P (s|c).
An alternative (and probably better) evaluation function is given by the
probability of winning which takes the form P (Black wins) = P (

∑

i si >
komi), where komi refers to the winning threshold for Black.

• Connectivity of stones is vital because stones can draw strength from other
stones. Connectivity could be measured by the correlation between nodes
under the distribution P (s|c). This would allow us to segment the board
into ‘groups’ of stones to reduce complexity.

• It would also be useful to observe cases where we have an anti-correlation
between nodes in the territory prediction. Japanese refer to such cases as
miai in which only one of two desired results can be achieved at the expense
of the other - a consequence of moving in turns.

• The fate of a group of Go stones could be estimated from the distribution
P (s|c) by marginalising out the nodes not involved.

The way stones exert long range influence can be considered recursive. A stone
influences its neighbours, who influence their neighbours and so on. A simple model

which exploits this idea is to consider the Go board itself as an undirected graphical
model in the form of a Conditional Random Field (CRF) [5]. We factorize the
distribution as

P (s|c) =
1

Z(c,θ)

∏

f∈F

ψf (sf , cf ,θf) =
1

Z(c,θ)
exp





∑

f∈F

log(ψf (sf , cf ,θf))



 .

(1)
The simplest form of this model has one factor for each pair of neighbouring nodes
i, j so ψf (sf , cf ,θf) = ψf (si, sj , ci, cj ,θf).

Boltzmann5 For our first model we decompose the factors into ‘coupling’ terms
and ‘external field’ terms as follows:

P (s|c) =
1

Z(c,θ)
exp





∑

(i,j)∈F

{w(ci, cj)sisj + h(ci)si + h(cj)sj}



 (2)

This gives a Boltzmann machine whose connections have the grid topology of the
board. The couplings between territory-outcome nodes depend on the current board
position local to those nodes and the external field at each node is determined
by the state of the board at that location. We assume that Go positions with
their associated territory positions are symmetric with respect to colour reversal so
ψf (si, sj , ci, cj ,θf) = ψf (−si,−sj ,−ci,−cj ,θf). Pairwise connections are also in-
variant to direction reversal so ψf (si, sj , ci, cj ,θf) = ψf (sj , si, cj , ci,θf). It follows
that the model described in 2 can be specified by just five parameters:

• wchains = w(Black,Black) = w(White,White),

• winter−chain = w(Black,White) = w(White,Black),

• wchain−empty = w(Empty,White) = w(Empty,Black),

• wempty = w(Empty,Empty),

• hstones = h(Black) = −h(White),

and h(empty) is set to zero by symmetry. We will refer to this model as Boltzmann5.
This simple model is interesting because all these parameters are readily interpreted.
For example we would expect wchains to take on a large positive value since chains
have common fate.

BoltzmannLiberties A feature that has particular utility for evaluating Go po-
sitions is the number of liberties associated with a chain of stones. A liberty of a
chain is an empty vertex adjacent to it. The number of liberties indicates a chain’s
safety because the opponent would have to occupy all the liberties to capture the
chain. Our second model takes this information into account:

P (s|c) =
1

Z(c,θ)
exp





∑

(i,j)∈F

w(ci, cj , si, sj , li, lj)



 , (3)

where li is element i of a vector l ∈ {+1,+2,+3, 4 or more}N the liberty count of
each vertex on the Go board. A group with four or more liberties is considered
relatively safe. Again we can apply symmetry arguments and end up with 78
parameters. We will refer to this model as BoltzmannLiberties.

We trained the two models using board positions from a database of 22,000 games
between expert Go players1. The territory outcomes of a subset of these games

1The GoGoD database, April 2003. URL:http://www.gogod.demon.co.uk

(a) Gibbs Sampling (b) Swendsen Wang

Figure 1: Comparing ordinary Gibbs with Swendsen Wang sampling for Boltz-
mann5. Shown are the differences between the running averages and the exact
marginals for each of the 361 nodes plotted as a function of the number of whole-
board samples.

were determined using the Go program GnuGo2 to analyse their final positions.
Each training example comprised a board position c, with its associated territory
outcome s. Training was performed by maximising the likelihood lnP (s′|c) using
gradient descent. In order to calculate the likelihood it is necessary to perform
inference to obtain the marginal expectations of the potentials.

3 Inference Methods

It is possible to perform exact inference on the model by variable elimination [6].
Eliminating nodes one diagonal at a time gave an efficient computation. The cost
of exact inference was still too high for general use but it was used to compare other
inference methods.

Sampling The standard method for sampling from a Boltzmann machine is to use
Gibbs sampling where each node is updated one at a time, conditional on the others.
However, Gibbs sampling mixes slowly for spin systems with strong correlations.
A generalisation of the Swendsen-Wang process [7] alleviates this problem. The
original Swendsen-Wang algorithm samples from a ferromagnetic Ising model with
no external field by adding an additional set of ‘bond’ nodes d, one attached to
each factor (edge) in the original graph. Each of these nodes can either be in the
state ‘bond’ or ‘no bond’. The new factor potentials ψf (sf , cf ,df ,θf) are chosen
such that if a bond exists between a pair of spins then they are forced to be in
the same state. Conditional on the bonds, each cluster has an equal probability
of having all its spins in the ‘up’ state or all in the ‘down’ state. The algorithm
samples from P (s|d, c,θ) and P (d|s, c,θ) in turn (flipping clusters and forming
bonds respectively). It can be generalised to models with arbitrary couplings and
biases [7, 8]. The new factor potentials ψf (sf , cf ,df ,θf) have the following effect:
if the coupling is positive then when the d node is in the ‘bond’ state it forces the
two spins to be in the same state; if the coupling is negative the ‘bond’ state forces
the two spins to be opposite. The probability of each cluster being in each state
depends on the sum of the biases involved. Figure 1 shows that the mixing rate
of the sampling process is improved by using Swendsen-Wang allowing us to find
accurate marginals for a single position in a couple of seconds.

2URL:http://www.gnu.org/software/gnugo/gnugo.html

Loopy Belief Propagation In order to perform very rapid (approximate) infer-
ence we used the loopy belief propagation (BP) algorithm [9] and the results are
examined in Section 4. This algorithm is similar to an influence function [10], as
often used by Go programmers to segment the board into Black and White territory
and for this reason is laid out below.

For each board vertex j ∈ N , create a data structure called a node containing:

1. A(j), the set of nodes corresponding to the neighbours of vertex j,

2. a set of new messages mnew
ij (sj) ∈ Mnew, one for each i ∈ A(j),

3. a set of old messages mold
ij (sj) ∈ Mold, one for each i ∈ A(j),

4. a belief bj(sj).

repeat
for all j ∈ N do

for all i ∈ A(j) do
for all sj ∈ {Black,White} do

let variable SUM := 0,
for all si ∈ {Black,White} do

SUM := SUM + ψ(i,j)(si, sj)
∏

q∈A(i)\j

mold
qi (si),

end for
mnew

ij (sj) := SUM,
end for

end for
end for
for all messages, mnew

xy (sy) ∈ Mnew do

mnew
xy (sy) := λmold

xy (sy) + (1 − λ)mnew
xy (sy),

end for
until completed I iterations (typically I=50)

Belief Update:
for all j ∈ N do

for all sj ∈ {Black,White} do
bj(sj) :=

∏

q∈A(j)

mnew
qj (sj)

end for
end for

Here, λ (typically 0.5), damps any oscillations. ψ(i,j)(si, sj) is the factor poten-
tial (see (1)) and in the case of Boltzmann5 takes on the form ψ(i,j)(si, sj) =
exp (w(ci, cj)sisj + h(ci)si + h(cj)sj). Now the probability of each vertex being
Black or White territory is found by normalising the beliefs at each node. For
example P (sj = Black) = bj(Black)/Z where Z = bj(Black) + bj(White). The
accuracy of the loopy BP approximation appears to be improved by using it during
the parameter learning stage in cases where it is to be used in evaluation.

4 Results for Territory Prediction

Some Learnt Parameters Here are some parameters learnt for the Boltzmann5
model (2). This model was trained on 290 positions from expert Go games at move
80. Training was performed by maximum likelihood as described in Section 2.

(a) Boltzmann5 (Exact) (b) Boltzmann5 (Loopy BP)

Figure 2: Comparing territory predictions for a Go position from a professional
game at move 90. The circles represent stones. The small black and white squares
at each vertex represent the average territory prediction at that vertex, from −1
(maximum white square) to +1 (maximum black square).

• hstones = 0.265

• wempty = 0.427

• wchain−empty = 0.442

• wchains = 2.74

• winter−chain = 0.521

The values of these parameters can be in-
terpreted. For example wchains corresponds
to the correlation between the likely territory
outcome of two adjacent vertices in a chain of
connected stones. The high value of this pa-
rameter derives from the ‘common fate’ prop-
erty of chains as described in Section 1.

Interestingly, the value of the parameter wempty (corresponding to the coupling
between territory predictions of neighbouring vertices in empty space) is 0.427 which
is close to the critical coupling for an Ising model, 0.441.

Territory Predictions Figure 2 gives examples of territory predictions generated
by Boltzmann5. In comparison, Figure 3 shows the prediction of BoltzmannLiberties
and a territory prediction from The Many Faces of Go [2]. Go players confirm that
the territory predictions produced by the models are reasonable, even around loose
groups of Black and White stones. Compare Figures 2 (a) and 3 (a); when liberty
counts are included as features, the model can more confidently identify which of the
two small chains competing in the bottom right of the board is dead. Comparing
Figure 2 (a) and (b) Loopy BP appears to give over-confident predictions in the top
right of the board where few stones are present. However, it is a good approximation
where many stones are present (bottom left).

Comparing Models and Inference Methods Figure 4 shows cross-entropies
between model territory predictions and true final territory outcomes for a dataset
of expert games. As we progress through a game, predictions become more accurate
(not surprising) but the spread of the accuracy increases, possibly due to incorrect
assessment of the life-and-death status of groups. Swendsen-Wang performs better
than Loopy BP, which may suffer from its over-confidence. BoltzmannLiberties
performs better than Boltzmann5 (when using Swendsen-Wang) the difference in

(a) BoltzmannLiberties (Exact) (b) Many Faces of Go

Figure 3: Diagram (a) is produced by exact inference (training was also by Loopy
BP). Diagram (b) shows the territory predicted by The Many Faces of Go (MFG)
[2]. MFG uses of a rule-based expert system and its prediction for each vertex has
three possible values: ‘White’, ‘Black’ or ‘unknown/neutral’.

performance increasing later in the game when liberty counts become more useful.

5 Modelling Move Selection

In order to produce a Go playing program we are interested in modelling the selec-
tion of moves. A measure of performance of such a model is the likelihood it assigns
to professional moves as measured by

∑

games

∑

moves

logP (move|model). (4)

We can obtain a probability over moves by choosing a Gibbs distribution with the
negative energy replaced by the evaluation function,

P (move|model,w) =
eβu(c′,w)

Z(w)
(5)

where u(c′,w) is an evaluation function evaluated at the board position c′ resulting
from a given move. The inverse temperature parameter β determines the degree to
which the move made depends on its evaluation. The territory predictions from the
models Boltzmann5 and BoltzmannLiberties can be combined with the evaluation
function of Section 2 to produce position evaluators.

6 Conclusions

We have presented a probabilistic framework for modelling uncertainty in the game
of Go. A simple model which incorporates the spatial structure of a board position
can perform well at predicting the territory outcomes of Go games. The models
described here could be improved by extracting more features from board positions
and increasing the size of the factors (see (1)).

B5 BLib B5 BLib B5 BLib

0.
0

0.
5

1.
0

1.
5

Swendsen−Wang

Move 20 Move 80 Move 150

C
ro

ss
 E

nt
ro

py

B5 BLib B5 BLib B5 BLib

0.
0

0.
5

1.
0

1.
5

Loopy BP

Move 20 Move 80 Move 150

C
ro

ss
 E

nt
ro

py

Figure 4: Cross entropies 1
N

∑N

n [s′n log sn +(1−s′n) log(1−sn)] between actual and
predicted territory outcomes, s′n and n for 327 Go positions. Sampling is compared
with Loopy BP (training and testing). 3 board positions were analysed for each
game (moves 20, 80 and 150). The Boltzmann5 (B5) and the BoltzmannLiberties
(BLib) models are compared.

Acknowledgements We thank I. Murray for helpful discussions on sampling and
T. Minka for general advice about probabilistic inference. This work was supported
by a grant from Microsoft Research UK.

References

[1] Thore Graepel, Mike Goutrie, Marco Kruger, and Ralf Herbrich. Learning on graphs
in the game of Go. In Proceedings of the International Conference on Artificial Neural
Networks, ICANN 2001, 2001.

[2] David Fotland. Knowledge representation in the many faces of go. URL:
ftp://www.joy.ne.jp/welcome/igs/Go/computer/mfg.tex.Z, 1993.

[3] Nicol N. Schrauldolph, Peter Dayan, and Terrance J. Sejnowski. Temporal difference
learning of position evaluation in the game of go. In Advances in Neural Information
Processing Systems 6, pages 817–824, San Fransisco, 1994. Morgan Kaufmann.

[4] Markus Enzenberger. The integration of a priori knowledge into a Go playing neural
network. URL: http://www.markus-enzenberger.de/neurogo.html, 1996.

[5] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proc. Int. Conf.
on Machine Learning, 2001.

[6] Fabio Gagliardi Cozman. Generalizing variable elimination in Bayesian networks. In
Proceedings of the IBERAMIA/SBIA 2000 Workshops, pages 27–32, 2000.

[7] R. H. Swendsen and J-S Wang. Nonuniversal critical dynamics in Monte Carlo sim-
ulations. Physical Review Letters, 58:86–88, 1987.

[8] Robert G. Edwards and Alan D. Sokal. Generalisation of the Fortuin-Kasteleyn-
Swendsen-Wang representation and Monte Carlo algorithm. Physical Review Letters,
38(6), 1988.

[9] Yair Weiss. Belief propagation and revision in networks with loops. Technical report,
AI Lab Memo, MIT, Cambridge, 1998.

[10] A. L. Zobrist. Feature Extractions and Representations for Pattern Recognition and
the Game of Go. PhD thesis, Graduate School of the University of Wisconsin, 1970.

