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Abstract

We consider the problem of deriving class-size independent generaliza-
tion bounds for some regularized discriminative multi-category classi-
fication methods. In particular, we obtain an expected generalization
bound for a standard formulation of multi-category support vector ma-
chines. Based on the theoretical result, we argue that the formula-
tion over-penalizes misclassification error, which in theory may lead to
poor generalization performance. A remedy, based on a generalization
of multi-category logistic regression (conditional maximum entropy), is
then proposed, and its theoretical properties are examined.

1 Introduction

We consider the multi-category classification problem, where we want to find a predictor
p : X → Y, whereX is a set of possible inputs andY is a discrete set of possible outputs.
In many applications, the output spaceY can be extremely large, and may be regarded as
infinity for practical purposes. For example, in natural language processing and sequence
analysis, the input can be an English sentence, and the output can be a parse or a translation
of the sentence. For such applications, the number of potential outputs can be exponential
of the length of the input sentence. As another example, in machine learning based web-
page search and ranking, the input is the keywords and the output space consists of all
web-pages.

In order to handle such application tasks, from the theoretical point of view, we do not
need to assume that the output spaceY is finite, so that it is crucial to obtain generalization
bounds that are independent of the size ofY. For such large scale applications, one often
has a routine that maps eachx ∈ X to a subset of candidatesGEN(x) ⊂ Y, so that the
desired output associated withx belongs toGEN(x). For example, for web-page search,
GEN(x) consists of all pages that contain one or more keywords inx. For sequence
annotation,GEN(x) may include all annotation sequences that are consistent. Although
the setGEN(x) may significantly reduce the size of potential outputsY, it can still be
large. Therefore it is important that our learning bounds are independent of the size of
GEN(x).

We consider the general setting of learning in Hilbert spaces since it includes the popular



kernel methods. Let our feature spaceH be a reproducing kernel Hilbert space with dot
product·. For a weight vectorw ∈ H, we use notation‖w‖2H = w ·w. We associate each
possible input/output pair(x, y) ∈ X × Y with a feature vectorfx,y ∈ H. Our classifier is
characterized by a weight vectorw ∈ H, with the following classification rule:

pw(x) = arg max
c∈GEN(x)

w · fx,c. (1)

Note that computational issues are ignored in this paper. In particular, we assume that the
above decision can be computed efficiently (either approximately or exactly) even when
GEN(x) is large. In practice, this is often possible either by heuristic search or dynamic
programming (whenGEN(X) has certain local-dependency structures). In this paper, we
are only interested in the learning performance, so that we will not discuss the computa-
tional aspect.

We assume that the input/output pair(x, y) ∈ X ×Y is drawn from an unknown underlying
distributionD. The quality of the predictorw is measured by some loss function. In this
paper, we focus on the expected classification error with respect toD:

`D(w) = E(X,Y ) I(pw(X), Y ), (2)

where(X,Y ) is drawn fromD, andI is the standard 0-1 classification error:I(Y ′, Y ) = 0
whenY ′ = Y andI(Y ′, Y ) = 1 whenY ′ 6= Y .

The general set up we described above is useful for many application problems, and has
been investigated, for example, in [2, 6]. The important issue of class-size independent (or
weakly dependent) generalization analysis has also been discussed there.

Consider a set of training dataS = {(Xi, Yi), i = 1, . . . , n}, where we assume that for
eachi, Yi ∈ GEN(Xi). We would like to findŵS ∈ H such that the classification error
`D(ŵS) is as small as possible. This paper studies regularized discriminative learning
methods that estimate a weight vectorŵS ∈ H by solving the following optimization
problem:

ŵS = arg min
w∈H

[
1
n

n∑
i=1

L(w, Xi, Yi) +
λ

2
‖w‖2H

]
, (3)

whereλ ≥ 0 is an appropriately chosen regularization parameter, andL(w, X, Y ) is a
loss function which is convex ofw. In this paper, we focus on some loss functions of the
following form:

L(w, X, Y ) = ψ

 ∑
c∈GEN(X)\Y

φ(w · (fX,Y − fX,c))

 ,

whereψ andφ are appropriately chosen real-valued functions.

Typically ψ is chosen as an increasing function andφ as a decreasing function, se-
lected so that (3) is a convex optimization problem. The intuition behind this method
is that the resulting optimization formulation favors large valuesw · (fXi,Yi

− fXi,c)
for all c ∈ GEN(Xi)\Yi. Therefore, it favors a weight vectorw ∈ H such that
w · fXi,Yi

= arg maxc∈GEN(Xi) w · fXi,c, which encourages the correct classification
rule in (1). The regularization termλ2 ‖w‖

2
H is included for capacity control, which has

become the standard practice in machine learning nowadays.

Two of the most important methods used in practice, multi-category support vector ma-
chines [7] and penalized multi-category logistic regression (conditional maximum entropy
with Gaussian smoothing [1]), can be regarded as special cases of (3). The purpose of this
paper is to study their generalization behaviors. In particular, we are interested in general-
ization bounds that are independent of the size ofGEN(Xi).



2 Multi-category Support Vector Machines

We consider the multi-category support vector machine method proposed in [7]. It is a
special case of (3) witĥwS computed based on the following formula:

ŵS = arg min
w∈H

 1
n

n∑
i=1

∑
c∈GEN(Xi)\Yi

h(w · (fXi,Yi
− ·fXi,c)) +

λ

2
‖w‖2H

 , (4)

whereh(z) = max(1 − z, 0) is the hinge loss used in the standard SVM formulation.
From the asymptotic statistical point of view, this formulation has some drawbacks in that
there are cases such that the method does not lead to a classifier that achieves the Bayes
error [9] (inconsistency). A Bayes consistent remedy has been proposed in [4]. However,
method based on (4) has some attractive properties, and has been successfully used for
some practical problems.

We are interested in the generalization performance of (4). As we shall see, this formulation
performs very well in the linearly separable (or near separable) case. Our analysis also
reveals a problem of this method for non-separable problems. Specifically, the formulation
over-penalizes classification error. Possible remedies will be suggested at the end of the
section.

We start with the following theorem, which specifies a generalization bound in a form often
referred to as theoracle inequality. That is, it bounds the generalization performance of
the SVM method (4) in terms of the best possible true multi-category SVM loss. Proof is
left to Appendix B.

Theorem 2.1 LetM = supX supY,Y ′∈GEN(X) ‖fX,Y − fX,Y ′‖H . The expected general-
ization error of (4) can be bounded as:

ES`D(ŵS) ≤ ESE(X,Y ) sup
c∈GEN(X)\Y

h(ŵS · (fX,Y − fX,c))

≤max(λn,M2) +M2

λn
inf

w∈H

E(X,Y )

∑
c∈GEN(X)\Y

h(w · (fX,Y − fX,c)) +
λn‖w‖2H
2(n+ 1)

 ,
whereES is the expectation with respect to the training data.

Note that the generalization bound does not depend on the size ofGEN(X), which is
what we want to achieve. The left-hand side of the theorem bounds the classification error
of the multi-category SVM classifier in terms ofsupc∈GEN(X)\Y h(ŵS · (fX,Y − fX,c)),
while the right hand side in terms of

∑
c∈GEN(X)\Y h(w · (fX,Y − fX,c)). There is a

mismatch here. The latter is a very loose bound since it over-counts classification errors
in the summation when multiple errors are made at the same point. In fact, although the
class-size dependency does not come into our generalization analysis, it may well come
into the summation term

∑
c∈GEN(X)\Y h(w · (fX,Y − fX,c)) when multiple errors are

made at the same point. We believe that this is a serious flaw of the method, which we
will try to remedy later. However, the bound can be quite tight in the near separable case,
when

∑
c∈GEN(X)\Y h(ŵS · (fX,Y − fX,c)) is small. The following Corollary gives such

a result:

Corollary 2.1 Assume that there is a large margin separatorw∗ ∈ H such that for each
data point(X,Y ), the following margin condition holds:

∀c ∈ GEN(X)\Y : w∗ · fX,Y ≥ w∗ · fX,c + 1.



Then in the limit ofλ→ 0, the expected generalization error of (4) can be bounded as:

ES`D(ŵS) ≤ ‖w∗‖2H
n+ 1

sup
X

sup
Y,Y ′∈GEN(X)

‖fX,Y − fX,Y ′‖2H ,

whereES is the expectation with respect to the training data.

Proof. Just choosew∗ on the right hand side of Theorem 2.1.2

The above result for (4) gives a class-size independent bound for large margin separable
problems. The bound generalizes a similar result for two-class hard-margin SVM. It also
matches a bound for multi-class perceptron in [2]. To our knowledge, this is the first result
showing that the generalization performance of a batch large margin algorithm such as (4)
can be class-size independent (at least in the separable case). Previous results in [2, 6],
relying on the covering number analysis, lead to bounds that depend on the size ofY
(although the result in [6] is of a different style).

Our analysis also implies that the multi-category classification method (4) has good gen-
eralization behavior for separable problems. However, as pointed out earlier, for non-
separable problems, the formulation over-penalize classification error since in the sum-
mation, it may count classification error at a point multiple times when multiple mistakes
are made at the point. A remedy is to replace the summation symbol

∑
c∈GEN(Xi)\Yi

in (4) by the sup operatorsupc∈GEN(Xi)\Yi
, as we have used for bounding the classifi-

cation error on the left hand side of Theorem 2.1. This is done in [3]. However, like
(4), the resulting formulation is also inconsistent. Instead of using a hard-sup operator,
we may also use a soft-sup operator, which can possibly lead to consistency. For exam-
ple, consider the equalitysupc |hc| = limp→∞(

∑
c |hc|p)1/p, we may approximate the

right hand side limit with a largep. Another more interesting formulation is to consider
supc hc = limp→∞ p−1 ln(

∑
c exp(phc)), which leads to a generalization of the condi-

tional maximum entropy method.

3 Large Margin Discriminative Maximum Entropy Method

Based on the motivation given at the end of the last section, we propose the following gen-
eralization of maximum entropy (multi-category logistic regression) with Gaussian prior
(see [1]). It introduces a margin parameter into the standard maximum entropy formula-
tion, and can be regarded as a special case of (3):

ŵS = arg min
w∈H

 1

n

n∑
i=1

1

p
ln

1 +
∑

c∈GEN(Xi)\Yi

ep(γ−w·(fXi,Yi
−fXi,c))

+
λ

2
‖w‖2H

 , (5)

whereγ is a margin condition, andp > 0 is a scaling factor (which in theory can also be
removed by a redefinition ofw andγ).

If we chooseγ = 0, then this formulation is equivalent to the standard maximum entropy
method. If we pick the margin parameterγ = 1, and letp→∞, then

1
p

ln

1 +
∑

c∈GEN(Xi)\Yi

ep(γ−w·(fXi,Yi
−fXi,c))

 → sup
c∈GEN(Xi)\Yi

h(w·(fXi,Yi−fXi,c)),

whereh(z) = max(0, 1 − z) is used in (4). In this case, the formulation reduces to (4)
but with

∑
c∈GEN(Xi)\Yi

replaced bysupc∈GEN(Xi)\Yi
. As discussed at the end of last

section, this solves the problem of over-counting the classification error.

In general, even with a finite scaling factorp, the log-transform in (4) guarantees that
one penalizes misclassification error at most1

p ln |GEN(Xi)| times at a point, where



|GEN(Xi)| is the size ofGEN(Xi), while in (4), one may potentially over-penalize
|GEN(Xi)| times. Clearly this is a desirable effect for non-separable problems. Meth-
ods in (5) have many attractive properties. In particular, we are able to derive class-size
independent generalization bounds for this method. The proof of the following theorem is
given in Appendix C.

Theorem 3.1 LetM = supX supY,Y ′∈GEN(X) ‖fX,Y − fX,Y ′‖H . Define lossL(w, x, y)
as:

L(w, x, y) =
1
p

ln

1 +
∑

c∈GEN(x)\y

ep(γ−w·(fx,y−fx,c))

 ,

and let

Qλ = inf
w∈H

[
E(X,Y )L(w, X, Y ) +

λn

2(n+ 1)
‖w‖2H

]
.

The expected generalization error of (5) can be bounded as:

ESE(X,Y )L(ŵS , X, Y ) ≤ Qλ +
M2

λn
(1− e−pQλ).

whereES is the expectation with respect to the training data.

Theorem 3.1 gives a class-size independent generalization bound for (5). Note that the left
hand side is the true loss of thêwS from (5), and the right hand size is specified in terms
of the best possible regularized true lossQλ, plus a penalty term that is no larger than
M2/(λn). It is clear that this generalization bound is class-size independent. Moreover,
unlike Theorem 2.1, the loss function on the left hand side matches the loss function on
the right hand side in Theorem 3.1. These are not trivial properties. In fact, most learning
methods do not have these desirable properties. We believe this is a great advantage for the
maximum entropy-type discriminative learning method in (5). It implies that this class of
algorithms are suitable for problems with large number of classes. Moreover, we can see
that the generalization performance is well-behaved no matter what values ofp andγ we
choose.

If we takeγ = 0 andp = 1, then we obtain a generalization bound for the popular maxi-
mum entropy method with Gaussian prior, which has been widely used in natural language
processing applications. To our knowledge, this is the first generalization bound derived for
this method. Our result not only shows the importance of Gaussian prior regularization, but
also implies that the regularized conditional maximum entropy method has very desirable
generalization behavior.

Another interesting special case of (5) is to letγ = 1 andp → ∞. For simplicity we only
consider the case that|GEN(X)| is finite (but can be arbitrarily large). In this case, we
note that0 ≤ L(w, X, Y ) − supc∈GEN(X)\Y h(w · (fX,Y − fX,c)) ≤ ln |GEN(X)|

p . We
thus obtain from Theorem 3.1 a bound

ESE(X,Y ) sup
c∈GEN(X)\Y

h(ŵS · (fX,Y − fX,c)) ≤
EX ln |GEN(X)|

p
+
M2

λn

+ inf
w∈H

[
E(X,Y ) sup

c∈GEN(X)\Y
h(w · (fX,Y − fX,c)) +

λ‖w‖2H
2

]
.

Now we can take a sufficiently largep such that the termEX ln |GEN(X)|/p becomes
negligible. Letp → ∞, the result implies a bound for the SVM method in [3]. For
non-separable problems, this bound is clearly superior to the SVM bound in Theorem 2.1
since the right hand side replaces the summation

∑
c∈GEN(X)\Y by the sup operator



supc∈GEN(X)\Y . In theory, this satisfactorily solves the problem of over-penalizing mis-
classification error. Moreover, an advantage over [3] is that for somep, consistency can be
achieved. Our analysis also establishes a bridge between the Gaussian smoothed maximum
entropy method [1] and the SVM method in [3].

4 Conclusion

We studied the generalization performance of some regularized multi-category classifica-
tion methods. In particular, we derived a class-size independent generalization bound for
a standard formulation of multi-category support vector machines. Based on the theoreti-
cal investigation, we showed that this method works well for linearly separable problems.
However, it over-penalizes mis-classification error, leading to loose generalization bounds
in the non-separable case. A remedy, based on a generalization of the maximum entropy
method, is proposed. Moreover, we are able to derive class-size independent bounds for the
newly proposed formulation, which implies that this class of methods (including the stan-
dard maximum entropy) are suitable for classification problems with very large number of
classes. We showed that in theory, the new formulation provides a satisfactory solution to
the problem of over-penalizing mis-classification error.

A A general stability bound

The following lemma is essentially a variant of similar stability results for regularized learn-
ing systems used in [8, 10]. We include the proof Sketch for completeness.

Lemma A.1 Consider a sequence of convex functionsLi(w) for i = 1, 2, . . . Define for
k = 1, 2, . . .

wk = arg min
w

[
k∑

i=1

Li(w) +
λn

2
‖w‖2H

]
.

Thenfor all k ≥ 1, there exists subgradient (cf. [5])∇Lk+1(wk+1) of Li at wk+1 such
that

wk+1 = − 1
λn

k+1∑
i=1

∇Li(wk+1), ‖wk −wk+1‖H ≤ 1
λn
‖∇Lk+1(wk+1)‖H .

Proof Sketch.The first equality is the first-order condition for the optimization problem [5]
wherewk+1 is the solution. Now, subtracting this equality atwk andwk+1, we have:

−λn(wk+1 −wk) = ∇Lk+1(wk+1) +
k∑

i=1

(∇Li(wk+1)−∇Li(wk)).

Multiply the two sides bywk+1 −wk, we obtain

−λn‖wk+1−wk‖2H = ∇Lk+1(wk+1)·(wk+1−wk)+

k∑
i=1

(∇Li(wk+1)−∇Li(wk))·(wk+1−wk).

Note that∇Li(wk+1)−∇Li(wk)) · (wk+1−wk) = dLi
(wk,wk+1) + dLi

(wk+1,wk),
wheredL(w,w′) = L(w′) − L(w) − ∇L(w) · (w′ − w) is often called the Bregman
divergence ofL, which is well-known to be non-negative for any convex functionL (this
claim is also easy to verify by definition). We thus have(∇Li(wk+1)−∇Li(wk))·(wk+1−
wk) ≥ 0. It follows that

−λn‖wk+1 −wk‖2H ≥ ∇Lk+1(wk+1) · (wk+1 −wk) ≥ −‖∇Lk+1(wk+1)‖H‖wk+1 −wk‖H .

By canceling the factor‖wk+1 −wk‖H , we obtain the second inequality.2



B Proof Sketch of Theorem 2.1

Considertraining samples(Xi, Yi) for i = 1, . . . , n+1. Let w̃k be the solution of (4) with
the training sample(Xk, Yk) removed from the set (that is, the summation is

∑n+1
i=1,i6=k),

and letw̃ be the solution of (4) but with the summation
∑n

i=1 replaced by
∑n+1

i=1 . Now for
notation simplicity, we letzk,c = w̃ · (fXk,Yk

− fXk,c) for c ∈ GEN(X). It follows from
Lemma A.1 that

‖w̃‖2H = − 1
λn

n+1∑
k=1

∑
c∈GEN(X)

h′(zk,c)zk,c, ‖w̃k−w̃‖H ≤ −M
λn

∑
c∈GEN(X)\Y

h′(zk,c),

whereh′(·) denotes a subgradient ofh(·). Therefore using the inequality−h′(z) ≤ h(z)−
h′(z)z, we have

sup
c∈GEN(Xk)\Yk

[h(w̃k · (fXk,Yk
− fXk,c))− h(zk,c)] ≤ ‖w̃k − w̃‖HM

≤− M2

λn

∑
c∈GEN(Xk)\Yk

h′(zk,c) ≤
M2

λn

∑
c∈GEN(Xk)\Yk

[h(zk,c)− h′(zk,c)zk,c].

Summing overk = 1, . . . , n+ 1, we obtain

n+1∑
k=1

sup
c∈GEN(Xk)\Yk

[h(w̃k · (fXk,Yk
− fXk,c))− h(zk,c)]

≤M
2

λn

∑
c∈GEN(Xk)\Yk

n+1∑
k=1

[h(zk,c)− h′(zk,c)zk,c]

=
M2

λn

∑
c∈GEN(Xk)\Yk

n+1∑
k=1

h(zk,c) + ‖w̃‖2HM2.

Therefore given an arbitraryw ∈ H, we have

n+1∑
k=1

sup
c∈GEN(Xk)\Yk

h(w̃k · (fXk,Yk
− fXk,c))

≤(1 +
M2

λn
)

∑
c∈GEN(Xk)\Yk

n+1∑
k=1

h(zk,c) + ‖w̃‖2HM2

≤max(1 +
M2

λn
,
2M2

λn
)

 ∑
c∈GEN(Xk)\Yk

n+1∑
k=1

h(zk,c) +
λn

2
‖w̃‖2H


≤max(1 +

M2

λn
,
2M2

λn
)

 ∑
c∈GEN(Xk)\Yk

n+1∑
k=1

h(w · (fXk,Yk
− fXk,c)) +

λn

2
‖w‖2H

 .
Now, taking expectation with respect to the training data, we obtain the bound.

C Proof Sketch of Theorem 3.1

Similar to the proof of Theorem 2.1, we consider training samples(Xi, Yi) for i =
1, . . . , n + 1. Let w̃k be the solution of (5) with the training sample(Xk, Yk) removed



from the set (that is, the summation is
∑n+1

i=1,i6=k), and letw̃ be the solution of (5) but with

the summation
∑n

i=1 replaced by
∑n+1

i=1 . It follows from Lemma A.1 that

‖w̃k − w̃‖H ≤ 1
λn
‖∇L(w̃, Xk, Yk)‖H ≤ M

λn
(1− e−pL(w̃,Xk,Yk)).

Therefore

L(w̃k, Xk, Yk)− L(w̃, Xk, Yk) ≤ M2

λn
(1− e−pL(w̃,Xk,Yk)).

Now summing overk, we obtain

1

n + 1

n+1∑
k=1

L(w̃k, Xk, Yk) ≤ 1

n + 1

n+1∑
k=1

L(w̃, Xk, Yk) +
M2

λn

(
1− 1

n + 1

n+1∑
k=1

e−pL(w̃,Xk,Yk)

)
.

Taking expectation with respect to the training data, and using the following Jensen’s
inequality:

−ES
1

n+ 1

n+1∑
k=1

e−pL(w̃,Xk,Yk) ≤ −e−pES
1

n+1

∑n+1
k=1 L(w̃,Xk,Yk),

weobtain

ESE(Xk,Yk)L(w̃k, Xk, Yk) ≤ ES

n+1∑
k=1

L(w̃, Xk, Yk)
n+ 1

+
M2

λn

(
1− e−pES

∑n+1
k=1

L(w̃,Xk,Yk)
n+1

)
.

Now, using the factES

∑n+1
k=1 L(w̃, Xk, Yk) ≤ (n+1)Qλ (which follows from the optimal

property ofw̃), we obtain the theorem.
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