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Abstract

Repeated spike patterns have often been taken as evidence for the synfire
chain, a phenomenon that a stable spike synchrony propagates through
a feedforward network. Inter-spike intervals which represent a repeated
spike pattern are influenced by the propagation speed of a spike packet.
However, the relation between the propagation speed and network struc-
ture is not well understood. While it is apparent that the propagation
speed depends on the excitatory synapse strength, it might also be related
to spike patterns. We analyze a feedforward network with Mexican-Hat-
type connectivity (FMH) using the Fokker-Planck equation. We show
that both a uniform and a localized spike packet are stable in the FMH
in a certain parameter region. We also demonstrate that the propagation
speed depends on the distinct firing patterns in the same network.

1 Introduction

Neurons transmit information through spikes, but how the information is encoded remains a
matter of debate. The classical view is that the firing rates of neurons encode information,
while a recent view is that spatio-temporal spike patterns encode the information. For
example, the synchrony of spikes observed in the cortex is thought to play functional roles
in cognitive functions [1]. The mechanism of synchrony has been studied theoretically
for several neural network models. Especially, the model of spike synchrony propagation
through a feedforward network is called the synfire chain [2].

The mechanism of generating synchrony in a feedforward network can be described as fol-
lows. When feedforward connections are homogeneous with excitatory efficacy as a whole,
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Figure 1: Network architecture. Each layer consists of N neuron arranged in a circle. Each
neuron projects its axon to a post-synaptic layer with Mexican-Hat-type connectivity.

post-synaptic neurons accept similar synaptic inputs. If neurons receive similar temporally
modulated inputs, the resultant spike timings will be also similar, or roughly synchronized
even though the membrane potentials fluctuate because of noise [3]. The question in a feed-
forward network is, whether the timing of spikes within a layer becomes more synchronized
or not as the spike packet propagates through a sequence of neural layers. Detailed analyses
of the activity propagation in feedforward networks have shown that homogeneous feedfor-
ward networks with excitatory synapses have a stable spike synchrony propagation mode
[4, 5, 6]. Neurons, however, are embedded in more structured networks with excitatory and
inhibitory synapses. Thus, such network structure would generate inhomogeneous inputs
to neurons and whether spike synchrony is stable is not a trivial issue.

One simple way to detect the synfire chain phenomena would be to record from several
neurons and find significant repeated patterns. If a spike packet propagates through a feed-
forward network, a statistically significant number of spike pairs would be found that have
fixed relative time lags (or inter-spike intervals (I1Sls).) Such correlated activity has been
experimentally observed in the anterior forebrain pathway of songbirds [7], in the pre-
frontal cortex of primates [8], both in vivo and in vitro [9], and in an artificially constructed
network in vitro [10]. To generate fixed ISIs by spike packet propagation, the propaga-
tion speed of a spike packet must be constant over several trials. The speed depends on
spike patterns as well as the structure of the network. Conventional homogeneous feedfor-
ward networks have only one stable spike pattern, namely a spatially uniform synchronized
activity, but structured networks can generally produce spatially inhomogeneous spike pat-
terns. In those networks, the relation between propagation speed and differences in the
spike pattern is not well understood.

It is therefore an important problem to study a biologically realistic, structured network in
the context of the synfire chain. Among suggested network structures, Mexican-Hat-type
(MH) connectivity is one of the most widely accepted as being representative of connectiv-
ity in the cortex [11]. Studies of a feedforward network with the MH connectivity (FMH)
have been reported [12]. Ina FMH, a localized activity propagates through the network, and
this network is preferable to a homogeneous feedforward network because it can transmit
analog information regarding position [12], and both position and intensity [13]. However,
no detailed analytical work on the structured synfire chain has been reported. In this paper,
we use the Fokker-Planck equation to analyze the FMH. The method of the Fokker-Planck
equation enables us to analyze the collective behavior of the membrane potentials in an



identical neural population [14, 15]. When it is applied to the synfire chain [5], the detailed
analysis of the flow diagram, the effect of the membrane potential distribution on the spike
packet evolution, and the interaction of spike packets is possible [5].

This paper thus examines the feedforward neural network model with Mexican-Hat-type
connectivity. Our strategy is, first, to describe the evolution of firing states through order
parameters, which allows us to measure the macroscopic quantity of the network. Second,
we relate the input order parameters to the output ones through the Fokker-Planck equation.
Finally, we analyze the evolution of spike packets with various shapes, and investigate
stable firing patterns and their propagation speeds.

2 Modd

We analyze the dynamics of a structured feedforward network composed of identical sin-
gle compartment, Leaky Integrate-and-Fire (LIF) neurons. Each neuron is aligned in aring
neural layer, and projects its axon to the next neural layer with the Mexican-Hat-type con-
nectivity (Fig.1). The input to one neuron generally includes both outputs from pre-synaptic
neurons and a random noisy synaptic current from ongoing activity. If we assume that the
thousands of synaptic background inputs that connect to one neuron are independent Pois-
sonian, instantaneous synapse, and have small amplitude of post synaptic potential (PSP),
we can approximate the sum of noisy background inputs as a Gaussian white noise fluc-
tuating around the mean of the total noisy inputs. The membrane potential of a neuron at
position 6 at time ¢, which receives many random Poisson excitatory and inhibitory inputs,
can be approximately described through a stochastic differential equation as follows:
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where C' is membrane capacitance, R is membrane resistance, 15 (6,t) is the synaptic
current to a neuron at position 8, fi is proportional to the mean of the total noisy input, and
n(t) is a Gaussian random variable with (n(¢)) = 0and (n(t)n(t')) = §(t—t'). Here, D’ is
the amplitude of Gaussian noise. The input current I (6, t) is obtained from the weighted
sum of output currents »< (6, t) generated by pre-synaptic neurons. The synaptic current is
derived from the convolution of its firing rate (6, t) with the PSP time course «(t). Here,
a(t) = Ba’texp(—at) where 3 is chosen such that a single EPSP generates a 0.0014
mV elevation from the resting potential. The Mexican-Hat-type connectivity consists of
a uniform term W, and a spatial modulation term W cos(6). We set the reset potential
and threshold potential as V and Vi, respectively. We start simulations from stationary
distribution of membrane potentials. The input to the initial layer is formulated in terms of
the firing rate on the virtual pre-synaptic layer,
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where o and r; are input parameters, and the temporal profile of activity is assumed to
be the Gaussian with o = 1 and £ = 10. Throughout this paper, parameter values are
given as follows: C' = 100 pF, R = 100 MQ, Vi, = 15 mV, D’ = 100, it = 0.075 pA,
Vo =0mV, Vi, = 15 mV, a = 2,and § = 0.00017. Space is divided into 50 regions
for the Fokker-Planck equation approach, and 10000 LIF neurons per layer are used in
simulations.
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Figure 2: A: Dynamics of membrane potential distribution at 6 = 0. B: A snapshot of
the membrane potential distributions for a range of [-7 =] at ¢t = 10.5. C: A shapshot
of the membrane potential distribution averaged with position 6. Results by a numerical
simulation (LIF) and the Fokker-Planck equation (PDE) are shown.

3 Theory

The prerequisites for a full description of the network activity are time series of order
parameters at an arbitrary time ¢ defined as follows:
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where ro(t) is the population firing rate of the neuron population, and r.(t) and r,(t) are
coefficients of the Fourier transformation of the spatial firing pattern which represent the
spatial eccentricity of activity at time ¢. r.(¢) and r5(¢) depends on the position of the
localized activity, but 1 (¢) does not. These order parameters play an important role in two
ways. First, we can describe the input to the next layer neuron at ¢ in a closed form of order
parameters. Second, their time integrals, which will be introduced later, become indices of
the spike packet shape. Input currents are described with the order parameters as follows:
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Given the time sequence of order parameters in the pre-synaptic layer, the order parameters
in the post-synaptic layer are obtained through the following calculations. The analytical
method we use here is the Fokker-Planck equation which describes the distribution of the
membrane potential of a pool of identical neurons as the probability density Py(v,t) of
voltage v at time ¢. The suffix # denotes that this neuron population is located at position 6.
We assume that there are a large number of neurons at position 6. Equation (1) is equivalent
to the Fokker-Planck equation [16] within the limit of a large neuron number N — oo,
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where Jy (v, t) is a probability flux and D = 1 (%) . Boundary conditions are

Pg(Vch, t) =0, 12)
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Equation (12) is the absorbing boundary condition at the threshold potential, and Eq. (13) is
the current source at the reset potential. From Eqg. (13), we obtain the firing rate of a post-
synaptic neuron r(6,t). The Fokker-Planck equations are solved based on the modified
Chang-Cooper algorithm [17].

Figure 2 shows the actual distribution of the initial layer’s membrane potentials and their
dynamics which accepts virtual layer activity with parameter ro = 500 and r; = 350.
Figure 2A shows the evolution of the probability density Py—o (v, t). From white to black,
the probability becomes higher. Figure 2B is a snapshot of the probability density at time
t = 10.5 over the region from —x to 7. As a result of a localized input injection, part
of neuronal membrane potentials is strongly depolarized. The membrane potential distri-
bution averaged over the neural layer is illustrated in Fig. 2C. It shows the consistency
between the numerical simulations and the Fokker-Planck equations. The probability flow
dropping out from the threshold potential V4, is a firing rate. Combined with these firing
rates at each position 6 and definitions of order parameters in Eqgs. (6)-(7), the order pa-
rameters on the post-synaptic neural layer are again calculated. The closed forms of order
parameters have been obtained.

Spatio-temporal patterns of firing rates and dynamics of order parameters in response to
a localized input (rg = 600,7; = 300) and a uniform input (ro = 900,7; = 0) are
shown in Fig. 3. When an input is spatially localized, the spatio-temporal firing pattern
is localized with a slightly distorted shape (Fig. 3A). On the other hand, when a uniform
input is applied, the spatio-temporal firing pattern is uniform as illustrated in Fig. 3B. We
show an example of the time course of rq(¢) and r1(¢) in Fig. 3C and 3D for both the
numerical simulation of 10, 000 LIF neurons and the Fokker-Planck equation. Elevation of
time course of r1 (¢) in Fig. 3C indicates the localized firing. In contrast, the uniform input
generates no response in 1 (¢) parameter as illustrated in Fig. 3D.

To quantitatively evaluate the spike packet shape and propagation speed, we define indices
ro,71, and o. rg and 1 can be directly defined as

ro = /dt ro(t) — spontaneous firing rate, 7y = /dt r1(t). (14)

ro corresponds to the total population activity, and r; corresponds to spatial eccentricity of
the activity. o and r; are a natural extension of an index used in the study of the synfire
chain [4] in the sense that an index corresponds to the area of a time varying parameters
of the system, such as the population firing rate (ro(¢)) above the spontaneous firing rate,
or spatial eccentricity (r1(¢)). The basic idea of characterizing the spike packet was to
approximate the firing rate curve through a Gaussian function [4] as in Eq. (5). Here, the
approximated Gaussian curve is obtained by minimizing the mean squared error with r¢(¢)
and the Gaussian. We also use the index o obtained from the variance of the Gaussian, and
t as an index for the arrival time of the spike synchrony taken from the peak time of the
Gaussian (Fig. 3C).

4 Results

Our observation of the activities of the FMH with various parameter sets reveals two types
of stable spike packets. Figure 4 shows the activity of the FMH with four characteristic
parameter sets of W, and ;. Here we use o = 500 and r; = 350 for the upper figures
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Figure 3: Activity profiles in response to a localized input (A,C) and a uniform input (B,D).
A,B: Spatio-temporal pattern of the firing rates from neurons at position —7 to 7. C,D:
Time courses of order parameters (rq(t),r1(¢)) calculated from numerical simulations of
a population of LIF neurons (squares and crosses) and the Fokker-Planck equation (solid
lines). The time course of order parameters in response to a single stimulus is approximated
by using a Gaussian function. In C, Gaussian approximation of r((¢) is also shown. The
variance of the Gaussian o and the mean value ¢ are used as the indices of a spike packet.

as a localized input and o = 900 and r; = 0 for the lower ones as a uniform input. The
common parameter is o = 1 and ¢ = 2. When both W, and W are small, no spike packet
can propagate (Non-firing). When the uniform activation term W, is sufficiently strong,
a uniform spike packet is stable (Uniform Activity). Note that even though the localized
input elicits localized spike packets with several layers, it finally decays to the uniform
spike packet. When the Mexican-Hat term W is strong enough, only the localized spike
packet is stable (Localized Activity). When W, and W are balanced within a certain ratio,
there exists a novel firing mode where both the uniform and the localized spike packet are
stable depending on the initial layer input (Multi-stable). The results show that there are
four types of phase and two types of spike packet in the FMH. The stability of a spike packet
depends on W, and W/;. In addition, the difference of the arrival times of propagating spike
packets in the 8th layer shown in the Multi-stable phase indicates that the propagation speed
of spike packets might differ.

It is apparent that the propagation speed depends on the strength of the excitatory synapse
efficacy, however, our results in the Multi-stable phase in Fig. 4 suggest that a spike pattern
also determines the propagation speed. To investigate this effect, we plotted propagation
time At, the difference between propagation time #P°st and #P* for various W, (Fig. 5B).
The speed is analyzed after the spike packet indices rq,7; and o have converged. The
convergences of spike packets are shown in the flow diagram in Fig. 5A for (Wy, W) =
(1,1.5) case. In Fig. 5B, each triangle indicates the speed of the localized activity, and each
circle corresponds to that of the uniform activity. Within the plotted region (W, = 1.4 ~
2), both the uniform and localized activities are stable, and no bursting activity is observed.
This indicates that as 77/ rises the propagation speed of localized activity becomes higher.
In contrast, the propagation speed of the uniform activity does not depends on 1/, because
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Figure 4: Four characteristic FMH with different stable states. The evolutions of firing rate
propagation are shown. The upper row panels show the response to an identical localized
pulse input, and the lower row panels show the response to a uniform pulse input.

uniform activity generates r.(t) = r4(t) = 0.

5 Summary

We have found that there are four phases in the W, — W, parameter space; Non-firing,
Localized activity, Uniform activity, and Multi-stable phase. Multi-stable phase is the most
intriguing in that an identical network has completely different firing modes in response to
different initial inputs. In this phase, the effect of spike pattern on the propagation speed
of the spike packet can be directly studied. By the analysis of the Fokker-Planck equation,
we found that the propagation speed depends on the distinct firing patterns in the same
network. It implies that observation of repeated spike patterns requires an appropriately
controlled input if the network structure produces a multi-stable state. The characteristic
speed of the spike packet also suggests that the speed of information processing in the brain
depends on the spiking pattern, or the representation of the information.
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