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Abstract

We have recently proposed an extension of ADABOOST to regression
that uses the median of the base regressors as the final regressor. In this
paper we extend theoretical results obtained for ADABOOST to median
boosting and to its localized variant. First, we extend recent results on ef-
ficient margin maximizing to show that the algorithm can converge to the
maximum achievable margin within a preset precision in a finite number
of steps. Then we provide confidence-interval-type bounds on the gener-
alization error.

1 Introduction

In a recent paper [1] we introduced MEDBOOST, a boosting algorithm that trains base
regressors and returns their weighted median as the final regressor. In another line of re-
search, [2, 3] extended ADABOOST to boost localized or confidence-rated experts with
input-dependent weighting of the base classifiers. In [4] we propose a synthesis of the two
methods, which we call LOCMEDBOOST. In this paper we analyze the algorithmic con-
vergence of MEDBOOST and LOCMEDBOOST, and provide bounds on the generalization
error.

We start by describing the algorithm in its most general form, and extend the result of [1] on
the convergence of the robust (marginal) training error (Section 2). The robustness of the
regressor is measured in terms of the dispersion of the expert population, and with respect to
the underlying average confidence estimate. In Section 3, we analyze the algorithmic con-
vergence. In particular, we extend recent results [5] on efficient margin maximizing to show
that the algorithm can converge to the maximum achievable margin within a preset preci-
sion in a finite number of steps. In Section 4, we provide confidence-interval-type bounds
on the generalization error by generalizing results obtained for ADABOOST [6, 2, 3]. As
in the case of ADABOOST, the bounds justify the algorithmic objective of minimizing the
robust training error. Note that the omitted proofs can be found in [4].

2 The LOCMEDBOOST algorithm and the convergence result

For the formal description, let the training data be Dn =
(
(x1, y1), . . . , (xn, yn)

)
where

data points (xi, yi) are from the set R
d × R. The algorithm maintains a weight distribu-

tion w
(t) =

(
w

(t)
1 , . . . , w

(t)
n

)
over the data points. The weights are initialized uniformly



LOCMEDBOOST(Dn, Cε(y
′, y), BASE(Dn,w), %, T )

1 w← (1/n, . . . , 1/n)

2 for t← 1 to T

3 (h(t), κ(t))← BASE(Dn,w) . see (1)

4 for i← 1 to n

5 θi ← 1− 2Cε

(
h(t)(xi), yi

)
. base rewards

6 κi ← κ(t)(xi) . base confidences

7 α(t) ← arg min
α

e%α
n∑

i=1

w
(t)
i e−ακiθi

8 if α(t) =∞ . κiθi ≥ % for all i = 1, . . . , n

9 return f (t)(·) = med
α,κ(·)

(
h(·)

)

10 if α(t) < 0 . equivalent to
n∑

i=1

w
(t)
i κiθi < %

11 return f (t−1)(·) = med
α,κ(·)

(
h(·)

)

12 for i← 1 to n

13 w
(t+1)
i ←w

(t)
i

exp(−α(t)κiθi)∑n
j=1 w

(t)
j exp(−α(t)κjθj)

=w
(t)
i

exp(−α(t)κiθi)

Z(t)

14 return f (T )(·) = med
α,κ(·)

(
h(·)

)

Figure 1: The pseudocode of the LOCMEDBOOST algorithm. Dn is the training data,
Cε(y

′, y) ≥ I{|y−y′|>ε} is the cost function, BASE(Dn,w) is the base regression algo-
rithm, % is the robustness parameter, and T is the number of iterations.

in line 1, and are updated in each iteration in line 13 (Figure 1). We suppose that we are
given a base learner algorithm BASE(Dn,w) that, in each iteration t, returns a base hy-
pothesis that consists of a real-valued base regressor h(t) ∈ H and a non-negative base
confidence function κ(t) ∈ K. In general, the base learner should attempt to minimize the
base objective

e
(t)
1 (Dn) = 2

n∑

i=1

w
(t)
i κ(t)(xi)Cε

(
h(t)(xi), yi

)
− κ̄(t), (1)

where Cε(y, y′) is an ε-dependent loss function satisfying

Cε(y, y′) ≥ C(0−1)
ε (y, y′) = I{|y − y′| > ε}, 1 (2)

and

κ̄(t) =

n∑

i=1

wiκ
(t)(xi) (3)

is the average confidence of κ(t) on the training set. Intuitively, e
(t)
1 (Dn) is a mixture

of the two objectives of error minimization and confidence maximization. The first term
is a weighted regression loss where the weight of a point xi is the product of its “con-
stant” weight w

(t)
i and the confidence κ(t)(xi) of the base hypothesis. Minimizing this

1The indicator function I{A} is 1 if its argument A is true and 0 otherwise.



term means to place the high-confidence region of the base regressor into areas where the
regression error is small. On the other hand, the minimization of the second term drives the
high-confidence region of the base regressor into dense areas. After Theorem 1, we will
explain the derivation of the base objective (1).

To simplify the notation in Figure 1 and in Theorem 1 below, we define the base rewards
θ
(t)
i and the base confidences κ

(t)
i for each training point (xi, yi), i = 1, . . . , n, base re-

gressor h(t), and base confidence function κ(t), t = 1, . . . , T , as

θ
(t)
i = 1− 2Cε(h

(t)(xi), yi) and κ
(t)
i = κ(t)(xi), (4)

respectively.2

After computing the base rewards and the base confidences in lines 5 and 6, the algorithm
sets the weight α(t) of the base regressor h(t) to the value that minimizes the exponential
loss

E(t)
% (α) = e%α

n∑

i=1

w
(t)
i e−ακiθi , (5)

where % is a robustness parameter that has a role in keeping the algorithm in its operating
range, in avoiding over- and underfitting, and in maximizing the margin (Section 3). If
κiθi ≥ % for all training points, then α(t) = ∞ and E

(t)
% (α(t)) = 0, so the algorithm

returns the actual regressor (line 9). Intuitively, this means that the capacity of the set of
base hypotheses is too large, so we are overfitting. If α(t) < 0, the algorithm returns the
regressor up to the last iteration (line 11). Intuitively, this means that the capacity of the
set of base hypotheses is too small, so we cannot find a new base regressor that would
decrease the training loss. In general, α(t) can be found easily by line-search because of
the convexity of E

(t)
% (α). In some special cases, α(t) can be computed analytically.

In lines 9, 11, or 14, the algorithm returns the weighted median of the base regressors.
For the analysis of the algorithm, we formally define the final regressor in a more general
manner. First, let α̃(t) = α(t)

P

T
j=1 α(j) be the normalized coefficient of the base hypothesis

(h(t), κ(t)), and let

c(T )(x) =
T∑

t=1

α̃(t)κ(t)(x) =

∑T
t=1 α(t)κ(t)(x)
∑T

t=1 α(t)
(6)

be the average confidence function3 after the T th iteration. Let f
(T )
ρ+ (x) and f

(T )
ρ− (x) be the

weighted
(

1+ρ/c(T )(x)
2

)
- and

(
1−ρ/c(T )(x)

2

)
-quantiles, respectively, of the base regressors

h(1)(x), . . . , h(T )(x) with respective weights α(1)κ(1)(x), . . . , α(T )κ(T )(x) (Figure 2(a)).
Formally, for any ρ ∈ R, if −c(T )(x) < ρ < c(T )(x), let

f
(T )
ρ+ (x) = min

j

{
h(j)(x) :

∑T
t=1 α(t)κ(t)(x)I{h(j)(x) < h(t)(x)}

∑T
t=1 α(t)κ(t)(x)

<
1− ρ

c(T )(x)

2

}
, (7)

f
(T )
ρ− (x) = max

j

{
h(j)(x) :

∑T
t=1 α(t)κ(t)(x)I{h(j)(x) > h(t)(x)}

∑T
t=1 α(t)κ(t)(x)

<
1− ρ

c(T )(x)

2

}
,(8)

otherwise (including the case when c(T )(x) = 0) let f
(T )
ρ+ (x) = ρ · (+∞) and f

(T )
ρ− (x) =

ρ · (−∞)4. Then the weighted median is defined as f (T )(·) = med
α,κ(·)

(
h(·)

)
= f

(T )
0+ (·).

2Note that we will omit the iteration index (t) where it does not cause confusion.
3Not to be confused with κ̄(t) in (3) which is the average base confidence over the training data.
4In the degenerative case we define 0 · ∞ = 0/0 = ∞.



}

}
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Figure 2: (a) Weighted
(

1+ρ/c(T )(x)
2

)
- and

(
1−ρ/c(T )(x)

2

)
-quantiles, and the weighted me-

dian of linear base regressors with equal weights α(t) = 1/9, constant base confidence
functions κ(x) ≡ 1, and ρ

c(T )(x)
≡ 0.25. (b) ρ-robust ε-precise regressor.

To assess the final regressor f (T )(·), we say that f (T )(·) is ρ-robust ε-precise on (xi, yi)

if and only if f
(T )
ρ+ (xi) ≤ yi + ε, and f

(T )
ρ− (xi) ≥ yi − ε. For ρ ≥ 0, this condition is

equivalent to both quantiles being in the “ε-tube” around yi (Figure 2(b)).

In the rest of this section we show that the algorithm minimizes the relative frequency
of training points on which f (T )(·) is not %-robust ε-precise. Formally, let the ρ-robust
ε-precise training error of f (T ) be defined as

L(ρ)(f (T )) =
1

n

n∑

i=1

I
{
f

(T )
ρ+ (xi) > yi + ε ∨ f

(T )
ρ− (xi) < yi − ε

}
.5 (9)

If ρ = 0, L(0)(f (T )) gives the relative frequency of training points on which the regressor
f (T ) has a larger L1 error than ε. If we have equality in (2), this is exactly the average loss
of the regressor f (T ) on the training data. A small value for L(0)(f (T )) indicates that the
regressor predicts most of the training points with ε-precision, whereas a small value for
L(ρ)(f (T )) with a positive ρ suggests that the prediction is not only precise but also robust
in the sense that a small perturbation of the base regressors and their weights will not
increase L(0)(f (T )). For classification with bi-valued base classifiers h : R

d 7→ {−1, 1},
the definition (9) (with ε = 1) recovers the traditional notion of robust training error, that
is, L(ρ)(f (T )) is the relative frequency of data points with margin smaller than ρ.

The following theorem upper bounds the ρ-robust ε-precise training error L(ρ) of the re-
gressor f (T ) output by LOCMEDBOOST.

Theorem 1 Let L(ρ)(f (T )) defined as in (9) and suppose that condition (2) holds for the

loss function Cε(·, ·). Define the base rewards θ
(t)
i and the base confidences κ

(t)
i as in (4).

Let w
(t)
i be the weight of training point xi after the tth iteration (updated in line 13 in

Figure 1), and let α(t) be the weight of the base regressor h(t)(·) (computed in line 7 in
Figure 1). Then for all ρ ∈ R

L(ρ)(f (T )) ≤
T∏

t=1

E(t)
ρ (α(t)), (10)

where E
(t)
ρ (α(t)) is defined in (5).

5For the sake of simplicity, in the notation we suppress the fact that L(ρ) depends on the whole
sequence of base regressors, base confidences, and weights, not only on the final regressor f(T ).



The proof is based on the observation that if the median of the base regressors goes further
than ε from the real response yi at training point xi, then most of the base regressors must
also be far from yi, giving small base rewards to this point.

The goal of LOCMEDBOOST is to minimize L(ρ)(f (T )) at ρ = % so, in view of Theorem 1,
our goal in each iteration t is to minimize E

(t)
% (5). To derive the base objective (1), we

follow the two step functional gradient descent procedure [7], that is, first we maximize
the negative gradient −E′

%(α) in α = 0, then we do a line search to determine α(t). Using

this approach, the base objective becomes e1(Dn) = −∑n
i=1 w

(t)
i κiθi, which is identical

to (1). Note that since E
(t)
% (α) is convex and E

(t)
% (0) = 1, a positive α(t) means that

minα E
(t)
% (α) = E

(t)
% (α(t)) < 1, so the condition in line 10 in Figure 1 guarantees that the

upper bound of (10) decreases in each step.

3 Setting % and maximizing the minimum margin

In practice, ADABOOST works well with % = 0, so setting % to a positive value is only
an alternative regularization option to early stopping. In the case of LOCMEDBOOST,
however, one must carefully choose % to keep the algorithm in its operating range and to
avoid over- and underfitting. A too small % means that the algorithm can overfit and stop in
line 9. In binary classification this is an unrealistic situation: it means that there is a base
classifier that correctly classifies all data points. On the other hand, it can happen easily
in the abstaining classifier/regressor model, when κ(t)(x) = 0 on a possibly large input
region. In this case, a base classifier can correctly classify (or a base regressor can give
positive base rewards θi to) all data points on which it does not abstain, so if % = 0, the
algorithm stops in line 9. At the other end of the spectrum, a large % can make the algorithm
underfit and stop in line 11, so one needs to set % carefully in order to avoid early stopping
in lines 9 or 11.

From the point of view of generalization, % also has an important role as a regularization
parameter. A larger % decreases the stepsize α(t) in the functional gradient view. From
another aspect, a larger % decreases the effective capacity of the the class of base hypotheses
by restricting the set of admissible base hypotheses to those having small errors. In general,
% has a potential role in balancing between over- and underfitting so, in practice, we suggest
that it be validated together with the number of iterations T and other possible complexity
parameters of the base hypotheses.

In the context of ADABOOST, there have been several proposals to set % in an adaptive
way to effectively maximize the minimum margin. In the rest of this section, we extend the
analysis of marginal boosting [5] to this general case. Although the agressive maximization
of the minimum margin can lead to overfitting, the analysis can provide valuable insight
into the understanding of LOCMEDBOOST and so it can guide the setting of % in practice.

For the sake of simplicity, let us assume that base hypotheses (h, κ) come from a finite set6

HN with cardinality N , and let H(t) =
{
(h(1), κ(1)), . . . , (h(t), κ(t))

}
be the set of base

hypotheses after the tth iteration. Let us define the edge of the base hypothesis (h, κ) ∈ HN

as7

γ(h,κ)(w) =
n∑

i=1

wiκiθi =
n∑

i=1

wiκ(xi)
(
1− 2Cε

(
h(xi), yi

))
,

and the maximum edge in the tth iteration as γ∗(t) = max(h,κ)∈HN
γ(h,κ)(w

(t)). Note
that γ(h,κ)(w) = −e1(Dn), so with this terminology, the objective of the base learner is

6The analysis can be extended to infinite base sets along the lines of [5].
7For the sake of simplicity, in the notation we suppress the dependence of γ(h,κ) on Dn.



to maximize the edge γ(t) = γ(h(t),κ(t))(w
(t)) (if the maximum is achieved, then γ(t) =

γ∗(t)), and the algorithm stops in line 11 if the edge γ(t) is less than %. On the other hand,
let us define the margin on a point (x, y) as the average reward8

ρ(x,y)(α) =

N∑

j=1

α̃(j)κ(j)θ(j) =

N∑

j=1

α̃(j)κ(j)(x)
(
1− 2Cε

(
h(j)(x), y

))
.

Let us denote the minimum margin over the data points in the tth iteration by

ρ∗(t) = min
(x,y)∈Dn

ρ(x,y)(α
(t−1)), (11)

where α
(t−1) =

(
α(1), . . . , α(t−1)

)
is the vector of base hypothesis coefficients up to the

(t− 1)th iteration.

It is easy to see that in each iteration, the maximum edge over the base hypotheses is at
least the minimum margin over the training points:

γ∗(t) = max
(h,κ)∈HN

γ(h,κ)(w
(t)) ≥ min

(x,y)∈Dn

ρ(x,y)(α
(t−1)) = ρ∗(t).

Moreover, as several authors (e.g., [5]) noted in the context of ADABOOST, by the Min-
Max-Theorem of von Neumann [8] we have

γ∗ = min
w

max
(h,κ)∈HN

γ(h,κ)(w) = max
α

min
(x,y)∈Dn

ρ(x,y)(α) = ρ∗,

so the minimum achievable maximal edge by any weighting over the training points is equal
to the maximum achievable minimal margin by any weighting over the base hypotheses.
To converge to ρ∗ within a factor ν in finite time, [5] sets

%
(t)
RW = min

j=1,...,t
γ(j) − ν,

and shows that ρ∗(t) exceeds ρ∗ − ν after
⌈

2 log n
ν2

⌉
+ 1 steps.

In the following, we extend these results to the general case of LOCMEDBOOST. First we
define the minimum and maximum achievable base rewards by

ρmin = min
(h,κ)∈HN

min
(x,y)∈Dn

κ(x)
(
1− 2Cε

(
h(x), y

))
, (12)

ρmax = max
(h,κ)∈HN

max
(x,y)∈Dn

κ(x)
(
1− 2Cε

(
h(x), y

))
, (13)

respectively. Let A = ρmax − ρmin, γ̃(t) = γ(t) − ρmin, and %̃(t) = %(t) − ρmin.9

Lemma 1 (Generalization of Lemma 3 in [5]) Assume that ρmin ≤ %(t) ≤ γ(t). Then

E
(t)

%(t)(α
(t)) ≤ exp

[
− %̃(t)

A
log

(
%̃(t)

γ̃(t)

)
− A− %̃(t)

%(t)
log

(
A− %̃(t)

A− γ̃(t)

)]
. (14)

Finite convergence of LOCMEDBOOST both with %(t) = % = const. and with an adaptive
%(t) = %

(t)
RW is based on the following general result.

Theorem 2 Assume that %(t) ≤ γ(t) − ν. Let ρ =
∑T

t=1 α̃(t)%(t). Then L(ρ)(f (T )) = 0

(so ρ∗(t) > ρ) after at most T =
⌈

A2 log n
2ν2

⌉
+ 1 iterations.

8For the sake of simplicity, in the notation we suppress the dependence of ρ(x,y) on HN .
9In binary classification, ρmin = −1, ρmax = 1, A = 2, eγ(t)

= 1 + γ(t), and e%(t)
= 1 + %(t).



The first consequence is the convergence of LOCMEDBOOST with a constant %.

Corollary 1 (Generalization of Corollary 4 in [5]) Assume that the weak learner always
achieves an edge γ(t) ≥ ρ∗. If ρmin ≤ % < ρ∗, then ρ∗(t) > % after at most T =⌈

A2 log n
2(ρ∗−%)2

⌉
+ 1 steps.

The second corollary shows that if % is set adaptively to %
(t)
RW then the minimum margin

ρ∗(t) will converge to ρ∗ within a precision ν in a finite number of steps.

Corollary 2 (Generalization of Theorem 6 in [5]) Assume that the weak learner always
achieves an edge γ(t) ≥ ρ∗. If ρmin ≤ %(t) = γ(t) − ν, ν > 0, then ρ∗(t) > ρ∗ − ν after at

most T =
⌈

A2 log n
2ν2

⌉
+ 1 iterations.

4 The generalization error

In this section we extend probabilistic bounds on the generalization error obtained for
ADABOOST [6], confidence-rated ADABOOST [2], and localized boosting [3]. Here we
suppose that the data set Dn is generated independently according to a distribution D over
R

d × R. The results provide bounds on the confidence-interval-type error

L(f (T )) = PD

[∣∣∣f (T )(X)− Y
∣∣∣ > ε

]
,

where (X,Y ) is a random point generated according to D independently from points in
Dn. The bounds state that with a large probability,

L(f (T )) < L(ρ)(f (T )) + C(n, ρ,H,K),

where the complexity term C depends on the size or the pseudo-dimension of the base
regressor set H, and the smoothness of the base confidence functions in K. As in the case
of ADABOOST, these bounds qualitatively justify the minimization of the robust training
error L(ρ)(f (T )).

Let C be the set of combined regressors obtained as a weighted median of base regressors
fromH, that is,

C =
{
f(·) = med

α,κ(·)

(
h(·)

)∣∣h ∈ HN ,α ∈ R
+N

,κ ∈ KN , N ∈ Z
+
}
.

In the simplest case, we assume thatH is finite and base coefficients are constant.

Theorem 3 (Generalization of Theorem 1 in [6]) Let D be a distribution over R
d × R,

and let Dn be a sample of n points generated independently at random according to D.
Assume that the base regressor set H is finite, and K contains only κ(x) ≡ 1. Then with
probability 1 − δ over the random choice of the training set Dn, any f ∈ C satisfies the
following bound for all ρ > 0:

L(f) < L(ρ)(f) + O

(
1√
n

(
log n log |H|

ρ2
+ log

1

δ

)1/2
)

.

Similarly to the proof of Theorem 1 in [6], we construct a set CN that contains
unweighted medians of N base functions from H, then approximate f by g(·) =
med1

(
h1(·), . . . , hN (·)

)
∈ CN where the base functions hi are selected randlomly ac-

cording to the coefficient distribution α̃. We then separate the one-sided error into two
terms by

PD

[
f(X) > Y + ε

]
≤ PD

[
g ρ

2 +(X) > Y + ε
]
+PD

[
g ρ

2 +(X) ≤ Y + ε
∣∣f(X) > Y + ε

]
,



and then upper bound the two terms as in [6].

The second theorem extends the first to the case of infinite base regressor sets.

Theorem 4 (Generalization of Theorem 2 of [6]) Let D be a distribution over R
d × R,

and let Dn be a sample of n points generated independently at random according to D.
Assume that the base regressor setH has pseudodimension p, and K contains only κ(x) ≡
1. Then with probability 1 − δ over the random choice of the training set Dn, any f ∈ C
satisfies the following bound for all ρ > 0:

L(f) < L(ρ)(f) + O

(
1√
n

(
p log2(n/p)

ρ2
+ log

1

δ

)1/2
)

.

The proof goes as in Theorem 3 and in Theorem 2 in [6] until we upper bound the shatter

coefficient of the set A =
{{

(x, y) : g ρ

2 +(x) > y + ε
}

: g ∈ CN , ρ = 0, 4
N , . . . , 2N

N

}
by

(N/2+1)(en/p)pN where p is the pseudodimension ofH (or the VC dimension ofH+ ={
{(x, y) : h(x) > y} : h ∈ H

}
).

In the most general case K can contain smooth functions.

Theorem 5 (Generalization of Theorem 1 of [3]) Let D be a distribution over R
d × R,

and let Dn be a sample of n points generated independently at random according to D.
Assume that the base regressor set H has pseudodimension p, and K contains functions
κ(x) which are lower bounded by a constant a, and which satisfy for all x,x′ ∈ R

d the
Lipschitz condition |κ(x) − κ(x′)| ≤ L‖x − x

′‖∞. Then with probability 1 − δ over the
random choice of the training set Dn, any f ∈ C satisfies the following bound for all ρ > 0:

L(f) < L(ρ)(f) + O

(
1√
n

(
(L/(aρ))dp log2(n/p)

ρ2
+ log

1

δ

)1/2
)

.

5 Conclusion

In this paper we have analyzed the algorithmic convergence of LOCMEDBOOST by gener-
alizing recent results on efficient margin maximization, and provided bounds on the gener-
alization error by extending similar bounds obtained for ADABOOST.
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