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Michael Schröder4, Jeremy Hill1, Wolfgang Rosenstiel4,

Christian E. Elger3, Bernhard Schölkopf1 and Niels Birbaumer2,5

1 Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
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Abstract

During the last ten years there has been growing interest in the develop-
ment of Brain Computer Interfaces (BCIs). The field has mainly been
driven by the needs of completely paralyzed patients to communicate.
With a few exceptions, most human BCIs are based on extracranial elec-
troencephalography (EEG). However, reported bit rates are still low. One
reason for this is the low signal-to-noise ratio of the EEG [16]. We are
currently investigating if BCIs based on electrocorticography (ECoG) are
a viable alternative. In this paper we present the method and examples
of intracranial EEG recordings of three epilepsy patients with electrode
grids placed on the motor cortex. The patients were asked to repeat-
edly imagine movements of two kinds, e.g., tongue or finger movements.
We analyze the classifiability of the data using Support Vector Machines
(SVMs) [18, 21] and Recursive Channel Elimination (RCE) [11].

1 Introduction

Completely paralyzed patients cannot communicate despite intact cognitive functions. The
disease Amyotrophic Lateral Sclerosis (ALS) for example, leads to complete paralysis of
the voluntary muscular system caused by the degeneration of the motor neurons. Birbaumer
et al. [1, 9] developed a Brain Computer Interface (BCI), called the Thought Translation
Device (TTD), which is used by several paralyzed patients. In order to use the interface,
patients have to learn to voluntary regulate their Slow Cortical Potentials (SCP). The system
then allows its users to write text on the screen of a computer or to surf the web. Although it
presents a major breakthrough, the system has two disadvantages. Not all patients manage



Figure 1: The left picture schematically shows the position of the 8x8 electrode grid of pa-
tient II. It was placed on the right hemisphere. As shown in the right picture the electrodes
are connected to the amplifier via cables that are passed through the skull.

to control their SCP. Furthermore the bit rate is quite low. A well-trained user requires
about 30 seconds to write one character.

Recently there has been increasing interest on EEG-based BCIs in the machine learning
community. In contrast to the TTD, in many BCI-systems the computer learns rather than
the system’s user [2, 5, 11]. Most such BCIs require a data collection phase during which
the subject repeatedly produces brain states of clearly separable locations. Machine learn-
ing techniques like Support Vector Machines or Fisher Discriminant are applied to the data
to derive a classifying function. This function can be used in online applications to identify
the different brain states produced by the subject.
The majority of BCIs is based on extracranial EEG-recordings during imagined limb
movements. We restrict ourselves to mentioning just a few publications [14, 15, 17, 22].
Movement-related cortical potentials in humans on the basis of electrocorticographical data
have also been studied, e.g. by [20]. Very recently the first work describing BCIs based on
electrocorticographic recordings was published [6, 13]. Successful approaches have been
developed using BCIs based on single unit, multiunit or field potentials recordings of pri-
mates. Serruya et al. taught monkeys to control a cursor on the basis of potentials from 7-30
motor cortex neurons [19]. The BCI developed by [3] enables monkeys to reach and grasp
using a robot arm. Their system is based on recordings from frontoparietal cell ensembles.

Driven by the success of BCIs for primates based on single unit or multiunit recordings,
we are currently developing a BCI-system that is based on ECoG recordings, as described
in the present paper.

2 Electrocorticography and Epilepsy

All patients presented suffer from a focal epilepsy. The epileptic focus - the part of the
brain which is responsible for the seizures - is removed by resection. Prior to surgery, the
epileptic focus has to be localized. In some complicated cases, this must be done by placing
electrodes onto the surface of the cortex as well as into deeper regions of the brain. The
skull over the region of interest is removed, the electrodes are positioned and the incision is
sutured. The electrodes are connected to a recording device via cables (cf. Figure 1). Over
a period of a 5 to 14 days ECoG is continuously recorded until the patient has had enough
seizures to precisely localize the focus [10]. Prior to surgery the parts of the cortex that are
covered by the electrodes are identified by the electric stimulation of electrodes.

In the current setup, the patients keep the electrode implants for one to two weeks. After
the implantation surgery, several days of recovery and follow-up examinations are needed.
Due to the tight time constraints, it is therefore not possible to run long experiments. Fur-
thermore most of the patients cannot concentrate for a long period of time. Therefore only
a small amount of data could be collected.



Table 1: Positions of implanted electrodes. All three patients had an electrode grid im-
planted that partly covered the right or the left motor cortex.

patient implanted electrodes task trials

I 64-grid right hemisphere, left vs. right hand 200
two 4-strip interhemisphere

II 64-grid right hemisphere little left finger vs. tongue 150
III 20-grid central, little right finger vs. tongue 100

four 16-strips frontal

3 Experimental Situation and Data Acquisition

The experiments were performed in the department of epileptology of the University of
Bonn. We recorded ECoG data from three epileptic patients with a sampling rate of
1000Hz.

The electrode grids were placed on the cortex under the dura mater and covered the pri-
mary motor and premotor area as well as the fronto-temporal region either of the right or
left hemisphere. The grid-sizes ranged from 20 to 64 electrodes. Furthermore two of the
patients had additional electrodes implanted on other parts of the cortex (cf. Table 1). The
imagery tasks were chosen such that the involved parts of the brain

• were covered by the electrode grid

• were represented spatially separate in the primary motor cortex.

The expected well-localized signal in motor-related tasks suggested discrimination tasks
using imagination of hand, little finger, or tongue movements.

The patients were seated in a bed facing a monitor and were asked to repeatedly imagine
two different movements. At the beginning of each trial, a small fixation cross was dis-
played in the center of the screen. The 4 second imagination phase started with a cue that
was presented in the form of a picture showing either a tongue or a little finger for patients
II and III. The cue for patient I was an arrow pointing left or right. There was a short break
between the trials. The images which were used as a cue are shown in Figure 5.

4 Preprocessing

Starting half a second after the visualization of the task-cue, we extracted a window of
length 1.5 seconds from the data of each electrode. For every trial and every electrode we
thus obtained an EEG sequence that consisted of 1500 samples. The linear trend from every
sequence was removed. Following [8, 11, 15] we fitted a forward-backward autoregressive
model of order three to each sequence. The concatenated model parameters of the channels
together with the descriptor of the imagined task (i.e. +1, -1) form one training point. For
a given number n of EEG channels, a training point (x, y) is therefor a point in R

3n ×
{−1, 1}.

5 Channel Selection

The number of available training points is relatively small compared to the dimensionality
of the data. The data of patient III for example, consists of only 100 training points of



Figure 2: The patients were asked to repeatedly imagine two different movements that are
represented separately at the primary cortex, e.g. tongue and little finger movements. This
figure shows two stimuli that were used as a cue for imagery. The trial structure is shown
on the right. The imagination phase lasted four seconds. We extracted segments of 1.5
seconds from the ECoG recordings for the analysis.

dimension 252. This is a typical setting in which features selection methods can improve
classification accuracy.

Lal et al. [11] recently introduced a feature selection method for the special case of EEG
data. Their method is based on Recursive Feature Elimination (RFE) [7]. RFE is a back-
ward feature selection method. Starting with the full data set, features are iteratively re-
moved from the data until a stopping criteria is met. In each iteration a Support Vector
Machine (SVM) is trained and its weight vector is analyzed. The feature that corresponds
to the smallest weight vector entry is removed.
Recursive Channel Elimination (RCE) [11] treats features that belong to the data of a chan-
nel in a consistent way. As in RFE, in every iteration one SVM is trained. The evaluation
criteria that determines which of the remaining channels will be removed is the mean of the
weight vector entries that correspond to a channel’s features. All features of the channel
with the smallest mean value are removed from the data. The output of RCE is a list of
ranked channels.

6 Data Analysis

To begin with, we are interested in how well SVMs can learn from small ECoG data sets.
Furthermore we would like to understand how localized the classification-relevant infor-
mation is, i.e. how many recording positions are necessary to obtain high classification
accuracy. We compare how well SVMs can generalize given the data of different subsets
of ECoG-channels:

(i) the complete data, i.e. all channels

(ii) the subset of channels suggested by RCE. In this setting we use the list of ranked
channels from RCE in the following way: For every l in the range of one to the
total number of channels, we calculate a 10-fold cross-validation error on the data
of the l best-ranked channels. We use the subset of channels which leads to the
lowest error estimate.

(iii) the two best-ranked channels by RCE. The underlying assumption used here is
that the classification-relevant information is extremely localized and that two cor-
rectly chosen channels contain sufficient information for classification purposes.

(iv) two channels drawn at random.

Throughout the paper we use linear SVMs. For regularization purposes we use a ridge on
the kernel matrix which corresponds to a 2-norm penalty on the slack variables [4].
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Figure 3: This plot shows ECoG recordings from 4 channels while the patient was imag-
ining movements. The distance of two horizontal lines decodes 100µV . The amplitude of
the recordings ranges roughly from -100 µV to +100 µV which is on the order of five to
ten times the amplitude measured with extracranial EEG.

To evaluate the classification performance of an SVM that is trained on a specific subset
of channels we calculate its prediction error on a separate test set. We use a double-cross-
validation scheme - the following procedure is repeated 50 times:
We randomly split the data into a training set (80%) and a test set (20%). Via 10-fold
cross-validation on the training set we estimate all parameters for the different considered
subsets (i)-(iv):

(i) The ridge is estimated.

(ii) On the basis of the training set RCE suggests a subset of channels. We restrict the
training set as well as the test set to these channels. A ridge-value is then estimated
from the restricted training set.

(iii) We restrict the training set and the test set to the 2 best ranked channels by RCE.
The ridge is then estimated on the restricted training set.

(iv) The ridge is estimated.

We then train an SVM on the (restricted) training set using the estimated ridge. The trained
model is tested on the (restricted) test set. For (i)-(iv) we obtain 50 test error estimates from
the 50 repetitions for each patient. Table 2 summarizes the results.

7 Results

The results in Table 2 show that the generalization ability can significantly be increased by
RCE. For patient I the error decreases from 38% to 24% when using the channel subsets
suggested by RCE. In average RCE selects channel subsets of size 5.8. For patient II the
number of channels is reduced to one third but the channel selection process does not yield
an increased accuracy. The error of 40% can be reduced to 23% for patient III using in
average 5 channels selected by RCE.
For patients I and III the choice of the best 2 ranked channels leads to a much lower error
as well. The direct comparison of the results using the two best ranked channels to two
randomly chosen channels shows how well the RCE ranking method works: For patient
three the error drops from chance level for two random channels to 18 % using the two
best-ranked channels.

The reason why there is such a big difference in performance for patient III when compar-
ing (i) and (iii) might be, that out of the 84 electrodes, only 20 are located over or close to
the motor cortex. RCE successfully identifies the important electrodes.
In contrast to patient III, the electrodes of patient II are all more or less located close to



Table 2: Classification Results. We compare the classification accuracy of SVMs trained
on the data of different channel subsets: (i) all ECoG-channels, (ii) the subset determined
by Recursive Channel Elimination (RCE), (iii) the subset consisting of the two best ranked
channels by RCE and (iv) two randomly drawn channels. The mean errors of 50 repetitions
are given along with the standard deviations. The test error can significantly be reduced by
RCE for two of the three patients. Using the two best ranked channels by RCE also yields
good results for two patients. SVMs trained on two random channels show performance
better than chance only for patient II.

all channels (i) RCE cross-val. (ii) RCE top 2 (iii) random 2 (iv)
pat #channels error #channels error error error

I 74 0.382 ± 0.071 5.8 0.243 ± 0.063 0.244 ± 0.078 chance level
II 64 0.257 ±0.076 21.5 0.268 ± 0.080 0.309 ± 0.086 0.419 ± 0.123
III 84 0.4 ±0.1 5.0 0.233 ±0.13 0.175 ± 0.078 chance level

the motor cortex. This explains why data from two randomly drawn channels can yield
a classification rate better than chance. Furthermore patient II had the fewest electrodes
implanted and thus the chance of randomly choosing an electrode close to an important
location is higher than for the other two patients.

8 Discussion

We recorded ECoG-data from three epilepsy patients during a motor imagery experiment.
Although only few data were collected, the following conclusions can be drawn:

• The data of all three patients is reasonably well classifiable. The error rates range
from 17.5% to 23.3%. This is still high compared to the best error rates from BCI
based on extracranial EEG which are as low as 10% (e.g. [12]). Please note that
we used 1.5 seconds data from each trial only and that very few training points
(100-200) were available. Furthermore, extracranial EEG has been studied and
developed for a number of years.

• Recursive Channel Elimination (RCE) shows very good performance. RCE suc-
cessfully identifies subsets of ECoG-channels that lead to good classification per-
formance. On average, RCE leads to a significantly improved classification rate
compared to a classifier that is based on the data of all available channels.

• Poor classification rates using two randomly drawn channels and high classifica-
tion rates using the two best-ranked channels by RCE suggest that classification
relevant information is focused on small parts of the cortex and depends on the
location of the physiological function.

• The best ranked RCE-channels correspond well with the results from the electric
stimulation (cf. Figure 8).

9 Ongoing Work and Further Research

Although our preliminary results indicate that invasive Brain Computer Interfaces may
be feasible, a number of questions need to be investigated in further experiments. For
instance, it is still an open question whether the patients are able to adjust to a trained
classifier and whether the classifying function can be transferred from session to session.
Moreover, experiments that are based on tasks different from motor imaginary need to
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Figure 4: Electric stimulation of the implanted electrodes helps to identify the parts of the
cortex that are covered by the electrode grid. This information is necessary for the surgery.
The red (solid) dots on the left picture mark the motor cortex of patient II as identified
by the electric stimulation method. The positions marked with yellow crosses correspond
to the epileptic focus. The red points on the right image are the best ranked channels by
Recursive Channel Elimination (RCE). The RCE-channels correspond well to the results
from the electro stimulation diagnosis.

be implemented and tested. It is quite conceivable that the tasks that have been found to
work well for extracranial EEG are not ideal for ECoG. Likewise, it is unclear whether our
preprocessing and machine learning methods, originally developed for extracranial EEG
data, are well adapted to the different type of data that ECoG delivers.
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signals recorded during right and left motor imagery using adaptive autoregressive
parameters. IEEE Transactions on Rehabilitation Engineering, 6(3):316–325, 1998.
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