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Abstract

In the context of binary classification, we define disagreement as a mea-
sure of how often two independently-trained models differ in their clas-
sification of unlabeled data. We explore the use of disagreement for error
estimation and model selection. We call the procedure co-validation,
since the two models effectively (in)validate one another by comparing
results on unlabeled data, which we assume is relatively cheap and plen-
tiful compared to labeled data. We show that per-instance disagreement
is an unbiased estimate of the variance of error for that instance. We also
show that disagreement provides a lower bound on the prediction (gen-
eralization) error, and a tight upper bound on the “variance of prediction
error”, or the variance of the average error across instances, where vari-
ance is measured across training sets. We present experimental results on
several data sets exploring co-validation for error estimation and model
selection. The procedure is especially effective in active learning set-
tings, where training sets are not drawn at random and cross validation
overestimates error.

1 Introduction

Balancing hypothesis-space generality with predictive power is one of the central tasks in
inductive learning. The difficulties that arise in seeking an appropriate tradeoff go by a
variety of names—overfitting, data snooping, memorization, no free lunch, bias-variance
tradeoff, etc.—and lead to a number of known solution techniques or philosophies, includ-
ing regularization, minimum description length, model complexity penalization (e.g., BIC,
AIC), Ockham’s razor, training with noise, ensemble methods (e.g., boosting), structural
risk minimization (e.g., SVMs), cross validation, hold-out validation, etc.

All of these methods in some way attempt to estimate or control the prediction (general-
ization) error of an induced function on unseen data. In this paper, we explore a method
of error estimation that we call co-validation. The method trains two independent func-
tions that in a sense validate (or invalidate) one another by examining their mutual rate of
disagreement across a set of unlabeled data. In Section 2, we formally define disagree-
ment. The measure simultaneously reflects notions of algorithm stability, model capacity,
and problem complexity. For example, empirically we find that disagreement goes down



when we increase the training set size, reduce the model’s capacity (complexity), or reduce
the inherent difficulty of the learning problem. Intuitively, the higher the disagreement
rate, the higher the average error rate of the learner, where the average is taken over both
test instances and training subsets. Therefore disagreement is a measure of the fitness of
the learner to the learning task. However, as researchers have noted in relation to various
measures of learner stability in general [Kut02], while robust learners (i.e, algorithms
with low prediction error) are stable, a stable learning algorithm does not necessarily have
low prediction error. In the same vein, we show and explain that the disagreement mea-
sure provides only lower bounds on error. Still, our empirical results give evidence that
disagreement can be a useful estimate in certain circumstances.

Since we require a source of unlabeled data—preferably a large source in order to accu-
rately measure disagreement—we assume a semi-supervised setting where unlabeled data
is relatively cheap and plentiful while labeled data is scarce or expensive. This scenario is
often realistic, most notably for text classification. We focus on the binary classification
setting and analyze 0/1 error.

In practice, cross validation—especially leave-one-out cross validation—often provides an
accurate and reliable error estimate. In fact, under the usual assumption that training and
test data both arise from the same distribution, k-fold cross validation provides an unbiased
estimate of prediction error (for functions trained on m (1 — 1/k) many instances, m being
the total number of labeled instances). However, in many situations, training data may
actually arise from a different distribution than test data. One extreme example of this is
active learning, where training samples are explicitly chosen to be maximally informative,
using a process that is neither independent nor reflective of the test distribution. Even
beyond active learning, in practice the process of gathering data and obtaining labels often
may bias the training set, for example because some inputs are cheaper or easier to label,
or are more readily available or obvious to the data collector, etc. In these cases, the error
estimate obtained from cross validation may not yield an accurate measure of the prediction
error of the learned function, and model selection based on cross validation may suffer.
Empirically we find that in active learning settings, disagreement often provides a more
accurate estimate of prediction error and is more useful as a guide for model selection.

Related to the problem of (average) error estimation is the problem of error variance es-
timation: both variance across test instances and variance across functions (i.e., training
sets). Even if a learning algorithm exhibits relatively low average error, if it exhibits high
variance, the algorithm may be undesirable depending on the end-user’s risk tolerance.
Variance is also useful for algorithm comparison, to determine whether observed error dif-
ferences are statistically significant. For variance estimation, cross validation is on much
less solid footing: in fact, Bengio and Grandvalet [BG03] recently proved an impossibility
result showing that no method exists for producing an unbiased estimate of the variance
of cross validation error in a pure supervised setting with labeled training data only. In
this work, we show how disagreement relates to certain measures of variance. First, the
disagreement on a particular instance provides an unbiased estimate of the variance of er-
ror on that instance. Second, disagreement provides an upper bound on the variance of
prediction error (the type of variance useful for algorithm comparison).

The paper is organized as follows. In § 2 we formally define disagreement and prove how
it lower-bounds prediction error and upper-bounds variance of prediction error. In § 3 we
empirically explore how error estimates and model selection strategies that we devise based
on disagreement compare against cross validation in standard (iid) learning settings and in
active learning settings. In § 4 we discuss related work. We conclude in § 5.

2 Error, Variance, and Disagreement

Denote a set of input instancesby X. Each instance x € X is a vector of feature attributes.
Each instance has a unique true classification or label y,, € {0, 1}, in general unknown to



the learner. Let Z* = {(x, y.)}™ be a set of m labeled training instances provided to the
learner. The learner is an algorithm A : Z* — F, that inputs labeled instances and output
a function f € F, where F' is the set of all functions (classifiers) that .4 may output (the
hypothesis space). Each f € F is a function that maps instances z to labels {0,1}. The
goal of the algorithm is to choose f € F' to minimize 0/1 error (defined below) on future
unlabeled test instances.

We assume the training set size is fixed at some m > 0, and we take expectations over
one or both of two distributions: (1) the distribution X over instances in X, and (2) the
distribution F induced over the functions F', when learner A is trained on training sets of
size m obtained by sampling from X.

The 0/1 error e, ¢ of a given function f on a given instance = equals 1 if and only if
the function incorrectly classifies the instances, and equals O otherwise; that is, e, ; =
1{f(z) # y. }. We define the expected prediction error ¢ of algorithm Aase = Ey ;e 4,
where the expectation is taken over instances drawn from X (x ~ X’), and functions drawn
from F (f ~ F). The variance of prediction error o2 is useful for comparing different
learners (e.g., [BGO3]). Let e; denote the 0/1 error of function f (i.e, ey = Eyey ¢). Then
02 = FE¢((ef —e)?) = Ef(e?) — e

Define the disagreement between two classifiers f; and f on instance = as 1{fi(z) #
f2(x)}. The disagreement rate of learner A is then:

d = Ey .5, H{f1(2) # fa(2)}, @)

where recall that the expectation is taken over x ~ X, fi ~ F, fo ~ F (with respect to
traning sets of some fixed size m).

Let d, be the (expected) disagreement at = when we sample functions from F: d, =
Ef 5, 1{f1(z) # f2(z)}. Similarly, let e, and o2 denote respectively the error and vari-
ance at z: e, = P(f(z) # yz)) = Ef1{f(x) # y.} = Eres, and 02 = VAR(ey) =
Ef[(1{f(z) # yz} — €1)?] = ex(1 — e,). (The last equality follow from the fact that
e, is a Bernoulli/binary random variable.) Now, we can establish the connection between
disagreement and variance of error (of the learner) at instance z:

dy = Ef17f21{(f1(x) =Yz and f2($) 7é ym) or (fl ({,E) 7& Yz andf2(3j = yac)}
P(1{(fi(z) = y» andfa(z) # yz) or (f1(2) # vz andfa(z) = ya)}
= 2P(f1(x):ym and f2(x)7éym):2€r(1_ez):>

o2 =d,/2. (2)

The derivations follow from the fact that the expectation of a Bernoulli random vari-
able is the same as its probability of being 1, and the two events above (the event
(f1(x) =y, and f2(x) # y,) and the event (f1(z) = y, and f2(x) # y,) ) are mutually
exclusive and have equal probability, and the two events f(xz) = y, and fo(x) # y, are
conditionally independent (note that the two events are conditioned on x, and the two func-
tions are picked independently of one another). Furthermore, d = E,Ey, ¢,[1{fi(z) #
fo(2)}] = Epdy = 2E,(02) = 2E,[e.(1 — ;)] = 2(e — E.€2), and therefore:

d

3= e — Ege2. 3)

2.1 Boundson Variance via Disagreement

The variance of prediction error o can be used to test the significance of the difference
in two learners’ error rates. Bengio and Granvalet [BG03] show that there is no unbiased
estimator of the variance of k-fold cross-validation in the supervised setting. We can see



from Equation 2 that having access to disagreement at a given instance = (labeled or not)
does yield the variance of error at that instance. Thus disagreement obtained via 2-fold
training gives us an unbaised estimator of o2, the variance of prediction error at instance
x, for functions trained on m /2 instances. (Note for unbiasedness, none of the functions
should have been trained on the given instance.) Of course, to compare different algorithms
on a given instance, one also needs the average error at that instance.

In terms of overall variance of prediction error o2 (where error is averaged across instances
and variance taken across functions), there exist scenarios when o2 is 0 but d is not (when
errors of the different functions learned are the same but negatively correlated), and scenar-
ios when o2 = d/2 # 0. In fact, disagreement yields an upper-bound:

Theorem 1 d > 202.

Proof (sketch). We show that the result holds for any finite sampling of functions and in-
stances: Consider the binary (0/1) matrix M where the rows correspond to instances and
the columns correspond to functions, and the entries are the binary-valued errors (entry
M, ; = 1{f;j(z;) # yu,})- Thus the average error is the number of 1 entries when sam-
plings of instances and functions are drawn from X’ and F respectively, and variances and
disagreement can also be readily defined for the matrix. We show the inequality holds
for any such n x n matrix for any n. This establishes the theorem (by using limiting ar-
guments). Treat the 1 entries (matrix cells) as vertices in a graph, where an edge exists
between two 1 entries if they share a column or a row. For a fixed number of 1 entries
N (N < n?), we show the difference between disagreement and variance is minimized
when the number of edges is maximized. We establish that configuration maximizing the
number of edges occurs when all the 1 entries form a compact formation, that is, all the
matrix entries in row i are filled before filling row i+1 with 1s. Finally, we show that for
such a configuration minimzing the difference, the difference remains nonnegative. o

In typical small training sample size cases when the errors are nonzero and not entirely
correlated (the patterns of 1s in the matrix is basically scattered) d/2 can be significantly
larger than o2. With increasing training size, the functions learned tend to make the same
errors and d and o2 both approach 0.

2.2 Boundson Error via Disagreement

From Jensen’s inequality, we have that E.e2 > (E,e,)? = €2, therefore using eq. 3, we
conclude that d/2 < e — 2. This implies that

1—\/21—2d§€§1+\/21—2d' @)

The upper bound derived is often not informative, as it is greater than 0.5, and often we

know the error is less than 0.5. Let ¢, = 1=v1=2d V21‘2d. We next discuss whether/when ¢;
can be far from the actual error, and the related question of whether we can derive a good
upperbound or just a good estimator on error using a measure based on disagreement.

When functions generated by the learner make correlated and frequent mistakes, e; can be
far from true error. The extreme case of this is a learner that always outputs a constant
function. In order to account for weak but stable learners, the error lower bound should be
complemented with some measure that ensures that the learner is actually adapting (i.e,
doing its job!). We explore using the training (empirical) error for this purpose. Let é
denote the average training error of the algorithm: é = Ejé; = E; L Ywiezs Wf(wi) #
Yz, }» Where Z* is the training set that yielded f. Define ¢ = max(é, e¢;). We explore é as
a candidate criterion for model selection, which we compare against the cross-validation
criterion in § 3.



Note that a learner can exhibit low disagreement and low training error, yet still have high
prediction error. For example, the learner could memorize the training data and output a
constant on all other instances. (Though when disagreement is exactly zero, the test error
equals the training error.) A measure of self-disagreement within the labeled training set,
defined by Lang et al. [LBRBO2], in conjunction with the empirical training error does
yield an upper bound. Still, we find empirically that, when using SVMs, naive Bayes, or
logistic regression, disagreement on unlabeled data does not tend to wildly underestimate
error, even though it’s theoretically possible.

3 Experiments

We conducted experiments on the “20 Newsgroups” and Reuters-21578 test categoriza-
tion datasets, and the Votes, Chess, Adult, and Optics datasets from the UCI collec-
tion [BKM98].1 We chose two categorization tasks from the newsgroups sets: (1) iden-
tifying Baseball documents in a collection containing both Baseball and Hockey docu-
ments (2000 total documents), and (2) identifying alt.atheism documents from among the
alt.atheism, soc.religion.christian, and talk.religion.misc collections (3000 documents). For
the Reuters set, we chose documents belonging to one of the top 10 categories of the cor-
pus (9410 documents), and we attempt to discriminate the “Earn” (3964) and “Acq” (2369)
respectively from the remaining nine. These categories are large enough that 0/1 error re-
mains a reasonable measure. We used the bow library for stemming and stop words, kept
features up to 3-grams, and used 12-normalized frequency counts [McC96]. The Votes,
Chess, Adult, and Optics datasets have respectively 435, 3197, 32561 and 1800 instances.
These datasets give us some representation of the various types of learning problems. All
our data set are in a nonnegative feature value representation. \We used support vector
machines with polynomial kernels available from the libsvm library [CLO1] in all our ex-
periments.? For the error estimation experiments, we used linear SVMs with a C value of
10. For the model selection experiments, we used polynomial degree as the model selection
parameter.

3.1 Error Estimation

We first examine the use of disagreement for error estimation both in the standard setting
where training and test samples are uniformly iid, and in an active learning scenario.

For each of several training set sizes for each data set, we computed average results and
standard deviation across thirty trials. In each trial, we first generate a training set, sam-
pled either uniformly iid or actively, then set aside 20% of remaining instances as the test
set. Next, we partition the training set into equal halves, train an SVM on each half, and
compute the disagreement rate between the two SVMs across the set of (unlabeled) data
that has not been designated for the training or test set (80% of total — m instances). We
repeat this inner loop of partitioning, dual training, and disagreement computation thirty
times and take averages.

We examined the utility of our disagreement bound (4) as an estimate of the true test error of
the algorithm trained on the full data set (“trueE”). We also examined using the maximum
of the training error (“trainE”) and lower bound on error from our disagreement measure
(“disE™) as an estimate of trueE (“MaxDtE = max(trainE, disE)”). Note that disE and trainE
are respectively unbiased empirical estimates of expected disagreement d and expected
training error € of § 2 for the standard setting. Since our disagreement measure is actually
a bound on half error (i.e., error averaged over training sets of size m/2), we also compare
against two-fold cross-validation error (“2cvE”), and the true test error of the two functions
obtained from training on the two halves (“1/2trueE”).

! Available from http://www.ics.uci.edu/ and http://www.daviddlewis.com/resources/testcollections/
2\\Ve observed similar results in error estimation using linear logistic regression and Naive Bayes
learners in preliminary experiments.
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Figure 1: (a) Random training set. (b) Actively picked.
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In the standard scenario, when the training set is chosen uniformly at random from the cor-
pus, leave-one-out cross validated error (“looE”) is generally a very good estimate of truek,
while 2cVE is a good estimate for 1/2trueE. For all the data sets, as expected our error esti-
mate maxDtE underestimates 1/2trueE. A representative example is shown in Figure 1(a).

Figure 2: Plots of ratios when active learning: (a) %‘I:

In the active learning scenario, the training set is chosen in an attempt to maximize informa-
tion, and the choice of each new instance depends on the set of previously chosen instances.
Often this means that especially difficult instances are chosen (or at least instances whose
labels are difficult to infer from the current training set). Thus cross validation naturally
overestimates the difficulty of the learning task and so may greatly overestimate error. On
the other hand, an approximate model of active learning is that the instances are iid sampled
from a hard distribution. This ignores the sequential nature of active learning. Measuring
disagreement on the easier test distribution via subsampling the training set may remain a
good estimator of the actual test error.

We used linear SVMs as the basis for our active learning procedure. In each trial, we begin
with random training set size of 10, and then grow the labeled set by using the uncertainty
sampling technique. We computed the various error measures at regular intervals.® A rep-
resentative plot of errors during active learning is given in Fig. 1(b). In all the datasets
experimented with, we have observed the same pattern: the error estimate using disagree-
ment provides a much better estimate of 1/2trueE and truekE than does 2cvE (Fig. 2a), and
can be used as an indication of the error and the progress of active learning. Note that while
we have not computed looE error in the error-estimation experiments, figure Fig. 1(b) in-
dicates that 2cvE is not a good estimator of trueE at size m/2 either, and this has been
the case in all our experiments. We have observed that disE estimates the 1/2trueE best
(Fig. 2c). The estimation performance may degrade towards the end of active learning
when the learner converges (disagreement approaches 0). However, we have observed that
both 1/2trueE (obtained via subsampling) and disE tend to overestimate the actual error of
the active learner even at half the training size (e.g., Fig. 1(b)). This observation underlines
the importance of taking the sequential nature of active learning into account.

3We could use a criterion based on disagreement for selective sampling, but we have not throughly
explored this option.
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3.2 Model Selection

We explore various criteria for selecting the expected best among twenty SVMs, each
trained using a different polynomial degree kernel. For each data set, we manually identify
an interval of polynomial degrees that seems to include the error minimum?, then choose
twenty degrees equally spaced within that interval. We compare our disagreement-based
estimate maxDtE with the cross validation estimates 100E and 2cvE as model selection cri-
teria. In each trial, we identify the polynomial degree that is expected to be best according
to each criteria, then train an SVM at that degree on the full training set. We compare trueE
at the degree selected by each criteria against truekE at the actual optimal degree.

In the standard uniform iid scenario, though cross validation often does fail as a model
selection criteria for regression problems, it seems that cross validation in general is hard
to beat for classification problems [SS02]. We find that both looE and 2cvE modestly
outperform maxDtE as model selection criteria, though maxDtE is often competitive. We
are exploring using the maximum of cross validation and maxDtE as an alternative with
preliminary evidence of a slight advantage over cross validation alone.

In an active learning setting, even though cross validation overestimates error, it is theoreti-
cally possible that cross validation would still function well to identify the best or near-best
model. However, our experiments suggest that the performance of cross validation as a
model selection criteria indeed degrades under active learning. In this situation, maxDtE
serves as a consistently better model selection criteria. Figure 3(a) shows an example where
maxDtE performs particularly well.

The active learning model selection experiments proceed as follows. For each data set,
we use one run of active learning to identify 200 ordered and actively-picked instances.
For each training size m € {25, 50,100, 200}, we run thirty experiments using a random
shuffling of the size-m prefix of the 200 actively-picked instances. In each trial and for
each of the twenty polynomial degrees, we measure trueE and looE, then run an inner
loop of thirty random partitionings and dual trainings to measure average d, expE, 2cvE,
and 1/2trueE. Disagreements and errors are measured across the full test set (total — m
instances), so this is a transductive learning setting. Figure 3(b) summarizes the results.
We observe that model selection based on disagreement often outperforms model selection
based on cross-validation, and at times significantly so. Across 26 experiments, the win-
loss-tie record of maxDtE versus 2cvE was 16-5-5, the record of maxDtE versus l00E was
18-6-2, and the record of 2cvE versus looE was 15-9-2.

“4Although for fractional degress less than 1 the kernal matrix is not guaranteed to be positive
semi-definite, we included such ranges whenever the range included the error minimum. Non-integral
degress greater than 1 do not pose a problem as the feature values in all our problem representations
are nonnegative.



4 Redated Work

Previous work has already shown that using various measures of stability on unlabeled data
is useful for ensemble learning, model selection, and regularization, both in supervised and
unsupervised learning [KV95, Sch97, SS02, BC03, LBRB02, LRBB04]. Metric-based
methods for model selection are complementary to our approach in that they are desgined
to prefer models/algorithms that behave similarly on the labeled and unlabeled data [Sch97,
SS02, BCO3], while disagreement is a measure of self-consistency on the same dataset (in
this paper, unlabeled data only). Consequently, our method is also applicable to scenarios in
which the test and training distributions are different. Lang et. al [LBRB02, LRBB04] also
explore disagreement on unlabeled data, establishing robust model selection techniques
based on disagreement for clustering. Theoretical work on algorithmic stability focuses
on deriving generalization bounds given that the algorithm has certain inherent stability
properties [KNO2].

5 Conclusionsand Future Work

Two advantages of co-validation over traditional techniques are: (1) disagreement can be
measured to almost an arbitrary degree assuming unlabeled data is plentiful, and (2) dis-
agreement is measured on unlabeled data drawn from the same distribution as test instances,
the extreme case of which is in transductive learning where the unlabeled and test instances
coincide. In this paper we derived bounds on certain measures of error and variance based
on disagreement, then examined empirically when co-validation might be useful. We found
co-validation particularly useful in active learning settings. Future goals include extending
the theory to active learning, precision/recall, algorithm comparison (using variance), en-
semble learning, and regression. We plan to compare semi-supervised and transductive
learning, and consider procedures to generate fictitious unlabeled data.
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