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Abstract

A novel linear feature selection algorithm is presented based on the
global minimization of a data-dependent generalization error bound.
Feature selection and scaling algorithms often lead to non-convex opti-
mization problems, which in many previous approaches were addressed
through gradient descent procedures that can only guarantee convergence
to a local minimum. We propose an alternative approach, whereby the
global solution of the non-convex optimization problem is derived via
an equivalent optimization problem. Moreover, the convex optimization
task is reduced to a conic quadratic programming problem for which effi-
cient solvers are available. Highly competitive numerical results on both
artificial and real-world data sets are reported.

1 Introduction

This paper presents a new approach to feature selection for linear classification where the
goal is to learn a decision rule from a training set of pairs Sn =

{

x(i), y(i)
}n

i=1
, where

x(i) ∈ R
d are input patterns and y(i) ∈ {−1, 1} are the corresponding labels. The goal

of a classification algorithm is to find a separating function f(·), based on the training set,
which will generalize well, i.e. classify new patterns with as few errors as possible. Feature
selection schemes often utilize, either explicitly or implicitly, scaling variables, {σj}dj=1,
which multiply each feature. The aim of such schemes is to optimize an objective function
over σ ∈ R

d. Feature selection can be viewed as the case σj ∈ {0, 1}, j = 1, . . . , d, where
a feature j is removed if σj = 0. The more general case of feature scaling is considered
here, i.e. σj ∈ R+. Clearly feature selection is a special case of feature scaling.

The overwhelming majority of feature selection algorithms in the literature, separate the
feature selection and classification tasks, while solving either a combinatorial or a non-
convex optimization problem (e.g. [1],[2],[3],[4]). In either case there is no guarantee
of efficiently locating a global optimum. This is particularly problematic in large scale
classification tasks which may initially contain several thousand features. Moreover, the
objective function of many feature selection algorithms is unrelated to the Generalization
Error (GE). Even for global solutions of such algorithms there is no theoretical guarantee
of proximity to the minimum of the GE.



To overcome the above shortcomings we propose a feature selection algorithm based on
the Global Minimization of an Error Bound (GMEB). This approach is based on simulta-
neously finding the optimal classifier and scaling factors of each feature by minimizing a
GE bound. As in previous feature selection algorithms, a non-convex optimization problem
must be solved. A novelty of this paper is the use of the equivalent optimization problems
concept, whereby a global optimum is guaranteed in polynomial time.

The development of the GMEB algorithm begins with the design of a GE bound for fea-
ture selection. This is followed by formulating an optimization problem which minimizes
this bound. Invariably, the resulting problem is non-convex. To avoid the drawbacks of
solving non-convex optimization problems, an equivalent convex optimization problem is
formulated whereby the exact global optimum of the non-convex problem can be computed.
Next the dual problem is derived and formulated as a Conic Quadratic Programming (CQP)
problem. This is advantageous because efficient CQP algorithms are available. Compara-
tive numerical results on both artificial and real-world datsets are reported.

The notation and definitions were adopted from [5]. All vectors are column vectors unless
transposed. Mathematical operators on scalars such as the square root are expanded to vec-
tors by operating componentwise. The notation R+ denotes nonnegative real numbers. The
notation x ¹ y denotes componentwise inequality between vectors x and y respectively.
A vector with all components equal to one is denoted as 1. The domain of a function f is
denoted as dom f . The set of points for which the objective and all the constraint functions
are defined is called the domain of the optimization problem, D. For lack of space, only
proof sketches will be presented; the complete proofs are deferred to the full paper.

2 The Generalization Error Bounds

We establish GE bounds which are used to motivate an effective algorithm for feature scal-
ing. Consider a sample Sn = {(x(1), y(1)), . . . , (x(n), y(n))}, x(i) ∈ X ⊆ R

d, y(i) ∈ Y ,
where (x(i), y(i)) are generated independently from some distribution P . A set of nonneg-
ative variables σ = (σ1, . . . , σd)

T is introduced to allow the additional freedom of feature
scaling. The scaling variables σ transform the linear classifiers from f(x) = wTx + b to
f(x) = wTΣx + b, where Σ = diag(σ). It may seem at first glance that these classifiers
are essentially the same since w can be redefined as Σw. However the role of σ is to offer
an extra degree of freedom to scale the features independently of w, in a way which can be
exploited by an optimization algorithm.

For a real-valued classifier f , the 0 − 1 loss is the probability of error given by
P (yf(x) ≤ 0) = EI (yf(x) ≤ 0), where I(·) is the indicator function.

Definition 1 The margin cost function φγ : R → R+ is defined as φγ(z) = 1 − z/γ if
z ≤ γ, and zero otherwise (note that I (yf(x) ≤ 0) ≤ φγ(yf(x))).

Consider a classifier f for which the input features have been rescaled, namely f(Σx) is
used instead of f(x). Let F be some class of functions and let Ên be the empirical mean.
Using standard GE bounds, one can establish that for any choice of σ, with probability at
least 1− δ, for any f ∈ F

P (yf(Σx) ≤ 0) ≤ Ênφγ (yf(Σx)) + Ω(f, δ, σ), (1)

for some appropriate complexity measure Ω depending on the bounding technique.

Unfortunately, (1) cannot be used directly when attempting to select optimal values of the
variables σ because the bound is not uniform in σ. In particular, we need a result which
holds with probability 1− δ for every choice of σ.



Definition 2 The indices of training patterns with labels {−1, 1} are denoted by I−, I+
respectively. The cardinalities of the sets I−, I+ are n−, n+ respectively. The empirical
mean of the second order moment of the jth feature over the training patterns belonging to

indices I−, I+ are v−j = 1
n
−

∑

i∈I
−

(

x
(i)
j

)2

, v+j = 1
n+

∑

i∈I+

(

x
(i)
j

)2

respectively.

Theorem 3 Fix B, r, γ > 0, and suppose that {(x(i), y(i))}ni=1 are chosen independently
at random according to some probability distribution P on X × {±1}, where ‖x‖ ≤ r for
x ∈ X . Define the class of functions F

F =
{

f : f(x) = wTΣx+ b, ‖w‖ ≤ B, |b| ≤ r, σ º 0
}

.

Let σ0 be an arbitrary positive number, and set σ̀j = 2max(σj , σ0). Then with probability
at least 1− δ, for every function f ∈ F

P (yf(x) ≤ 0) ≤ Ênφγ (yf(x)) +
2B

γ





√
n+

n

√

√

√

√

d
∑

j=1

v+j σ̀
2
j +

√
n−
n

√

√

√

√

d
∑

j=1

v−j σ̀
2
j



 +Λ ,

(2)
where K(σ) = (B‖σ̀‖+ 1)r and Λ = Λ(σ,γ,δ)√

n
,

Λ(σ, γ, δ) =
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γ
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Proof sketch We begin by assuming a fixed upper bound on the values of σj , say σj ≤ sj ,
j = 1, 2, . . . , d. This allows us to use the methods developed in [6] in order to establish
upper bounds on the Rademacher complexity of the class F , where σj ≤ sj for all j.
Finally, a simple variant of the union bound (the so-called multiple testing lemma) is used
in order to obtain a bound which is uniform with respect to σ (see the proof technique of
Theorem 10 in [6]).

In principle, we would like to minimize the r.h.s. of (2) with respect to the variables w, σ, b.
However, in this work the focus is only on the data-dependent terms in (2), which include
the empirical error term and the weighted norms of σ. Note that all other terms of (2) are
of the same order of magnitude (as a function of n), but do not depend explicitly on the
data. It should be commented that the extra terms appearing in the bound arise because of
the assumed unboundedness of σ. Assuming σ to be bounded, e.g. σ ¹ s, as is the case
in most other bounds in the literature, one may replace σ by s in all terms except the first
two, thus removing the explicit dependence on σ.

The data-dependent terms of the GE bound (2) are the basis of the objective function

1
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where C+ = C− = 4 and the variables are subject to wTw ≤ 1, σ º 0. The transition
was performed by setting B = 1, and replacing σ̀ by 2σ (assuming that σ > σ0).

Due to the fact that only the sign of f determines the estimated labels, it can be multiplied
by any positive factor and produce identical results. The constraint on the norm of w
induces a normalization on the classifier f(x) = wTx + b, without which the classifier is
not unique. However, by introducing the scale variables σ, the classifier was transformed to
f(x) = wTΣx+ b. Hence, despite the constraint on w, the classifier is not unique again. If
the variable γ in (3) is set to an arbitrary positive constant then the solution is unique. This
is true because γ appears in (3) only in the expressions b

γ
, σ1

γ
, . . . , σd

γ
. We chose γ = 1.



The objective function is comprised of two elements: (1) the mean of the penalty on the
training errors (2) and two weighted l2 norms of the scale variables σ. The second term acts
as the feature selection element. Note that the values of C+, C− following from Theorem
3 depend specifically on the bounding technique used in the proof. To allow more gener-
ality and flexibility in practical applications, we propose to turn the norm terms of (3) into
inequality constraints which are bounded by hyperparameters R+, R− respectively. The
interpretation of these hyperparameters is essentially the number of informative features.
We propose that R+, R− are chosen via a Cross Validation (CV) scheme. These hyperpa-
rameters enable fine-tuning a general classifier to a specific classification task as is done in
many other classification algorithms such as the SVM algorithm.

Note that the present bound is sensitive to a shift of the features. Therefore, as a prepro-
cessing step the features of the training patterns should be set to zero mean and the features
of the test set shifted accordingly.

3 The primal non-convex optimization problem

The problem of minimizing (3) with γ = 1 can then be expressed as

minimize 1
T ξ

subject to wTw ≤ 1

y(i)(
∑d

j=1 x
(i)
j wjσj + b) ≥ 1− ξi, i = 1, . . . , n

R+ ≥
∑d

j=1 v
+
j σ

2
j

R− ≥
∑d

j=1 v
−
j σ

2
j

ξ, σ º 0,

(4)

with variables w, σ ∈ R
d, ξ ∈ R

n, b ∈ R. Note that the constant value 1
n

was discarded.

Remark 4 Consider a solution of problem (4) in which σ?j = 0 for some feature j. Only
the constraint wTw ≤ 1 affects the value of w?

j . A unique solution is established by setting
σ?j = 0 ⇒ w?

j = 0. If the original solution w? satisfies the constraint wTw ≤ 1 then the
amended solution will also satisfy the constraint and won’t affect the value of the objective
function.

The functions wjσj in the second inequality constraints are neither convex nor concave (in
fact they are quasiconcave [5]). To make matters worse, the functions wjσj are multiplied
by constants −y(i)x(i)j which can be either positive or negative. Consequently problem (4)
is not a convex optimization problem. The objective of Section 3.1 is to find the global
minimum of (4) in polynomial time despite its non-convexity.

3.1 Convexification

In this paper the informal definition of equivalent optimization problems is adopted from
[5, pp. 130–135]: two optimization problems are called equivalent if from a solution of
one, a solution of the other is found, and vice versa. Instead of detailing a complicated
formal definition of general equivalence, the specific equivalence relationships utilized in
this paper are either formally introduced or cited from [5].

The functionswjσj in problem (4) are not convex and the signs of the multiplying constants
−y(i)x(i)j are data dependant. The only functions that remain convex irrespective of the sign
of the constants which multiply them are linear functions. Therefore the functions wjσj
must be transformed into linear functions.



However, such a transformation must also maintain the convexity of the objective function
and the remaining constraints. For this purpose the change of variables equivalence rela-
tionship, described in appendix A, was utilized. The transformation φ : R

d×R
d → R

d×R
d

was used on the variables w, σ:

σj = +
√

σ̃j , wj =
w̃j
√

σ̃j
, j = 1, . . . , d, (5)

where domφ = {(σ̃, w̃)|σ̃ º 0}. If σ̃j = 0 then σj = wj = 0 without regard to the
value of w̃j , in accordance with remark 4. Transformation (5) is clearly one-to-one and
φ(domφ) ⊇ D.

Lemma 5 The problem

minimize 1
T ξ

subject to y(i)(w̃Tx(i) + b) ≥ 1− ξi, i = 1, . . . , n
∑d

j=1

w̃2
j

σ̃j
≤ 1

R+ ≥ (v+)T σ̃
R− ≥ (v−)T σ̃
ξ, σ̃ º 0

(6)

is convex and equivalent to the primal non-convex problem (4) with transformation (5).

Note that since w̃j = wjσj , the new classifier is f(x) = w̃Tx + b. Therefore there is no
need to use transformation (5) to obtain the desired classifier. Also one can use Schur’s
complement [5] to transform the non-linear constraint into a sparse linear matrix inequality
constraint

[

Σ w
wT 1

]

º 0.

Thus problem (6) can be cast as a Semi-Definite Programming (SDP) problem. The primal
problem therefore, consists of n+2d+1 variables, 2n+d+2 linear inequality constraints
and a linear matrix inequality of [(d + 1) × (d + 1)] dimensions. Although the primal
problem (6) is convex, it heavily relies on the number of features d which is typically the
bottleneck for feature selection datasets. To alleviate this dependency the Dual problem is
formulated.

Theorem 6 (Dual problem) The dual optimization problem associated with problem (6)
is

maximize 1
Tµ− µ1 −R+µ+ −R−µ−

subject to
(

∑n
i=1 µiy

(i)x
(i)
j , 2µ1, (µ+v

+
j + µ−v

−
j )

)

∈ Kr , j = 1, . . . , d

µT y = 0
0 ¹ µ ¹ 1

µ+, µ− ≥ 0,

(7)

where Kr is the Rotated Quadratic Cone (RQC) Kr = {(x, y, z) ∈ R
n × R × R|xTx ≤

2yz, y ≥ 0, z ≥ 0} and with the variables µ ∈ R
n, µ1, µ2 ∈ R.

Theorem 7 (Strong duality) Strong duality holds between problems (6) and (7).

The dual problem (7) is a CQP problem. The number of variables is n + 3, there are
2n+2 linear inequality constraints, a single linear equality constraint and d RQC inequality
constraints. Due to the reduced computational complexity we used the dual formulation in
all the experiments.



4 Experiments

Several algorithms were comparatively evaluated on a number of artificial and real world
two class problem datasets. The GMEB algorithm was compared to the linear SVM (stan-
dard SVM with linear kernel) and the l1 SVM classifier [7].

4.1 Experimental Methodology

The algorithms are compared by two criteria: the number of selected features and the
error rates. The weight assigned by a linear classifier to a feature j, determines whether it
shall be ‘selected’ or ‘rejected’. This weight must fulfil at least one of the following two
requirements:

1. Absolute measure - |wj | ≥ ε.

2. Relative measure - |wj |
maxj{|wj |} ≥ ε.

In this paper ε = 0.01 was used. Ideally, ε should be set adaptively. Note that for the
GMEB algorithm w̃ should be used.

The definition of the error rate is intrinsically entwined with the protocol for determining
the hyperparameter. Given an a-priori partitioning of the dataset into training and test sets,
the following protocol for determining the value of R+, R− and defining the error rate is
suggested:

1. Define a setR of values of the hyperparametersR+, R− for all datasets. The setR
consists of a predetermined number of values. For each algorithm the cardinality
|R| = 49 was used.

2. Calculate the N-fold CV error for each value ofR+, R− from setR on the training
set. Five fold CV was used throughout all the datasets.

3. Use the classifier with the value of R+, R− which produced the lowest CV error
to classify the test set. This is the reported error rate.

If the dataset is not partitioned a-priori into a training and test set, it is randomly divided
into np contiguous training and ‘test’ sets. Each training set contains nnp−1

np
patterns and

the corresponding test set consists of n
np

patterns. Once the dataset is thus partitioned, the
above steps 1− 3 can be implemented. The error rate and the number of selected features
are then defined as the average on the np problems. The value np = 10 was used for all
datasets, where an a-priori partitioning was not available.

The hyperparameter setsR used for the GMEB algorithm consisted of 7×7 linearly spaced
values between 1 and 10. For the SVM algorithms the set R consisted of the values Λ

1−Λ
where Λ = {0.02, 0.04, . . . , 0.98}, i.e. 49 linearly spaced values between 0.02 and 0.98.

4.2 Data sets

Tests were performed on the ‘Linear problem’ synthetic datasets as described in [2], and
eight real-world problems. The number of features, the number of patterns and the parti-
tioning into train and test sets of the real-world datasets are detailed in Table 2. The datasets
were taken form the UCI repository unless stated otherwise. Dataset (1) is termed Wiscon-
sin Diagnostic Breast Cancer ‘WDBC’, (2) ‘Multiple Features’ dataset, which was first
introduced by ([8]), (3) the ‘Internet Advertisements’ dataset, was separated into a training
and test set randomly, (4) the ‘Colon’ dataset, taken from ([2]), (5) the ‘BUPA’ dataset, (6)
the ‘Pima Indians Diabetes’ dataset, (7) the ‘Cleveland heart disease’ dataset, and (8), the
‘Ionosphere’ dataset.



Table 1: Mean and standard deviation of the mean of test error rate percentage on synthetic
datasets given n training patterns. The number of selected features is in brackets.

n SVM l1 SVM GMEB
10 46.2± 1.9 (197.1±2.1) 49.6± 1.9 (77.7±83.8) 33.8 ± 14.2 (3.7±2.1)
20 44.9± 2.1 (196.8±1.9) 38.5± 12.7 (10.7±6.1) 13.9 ± 7.2 (4.8±2.7)
30 43.6± 1.7 (196.7±2.8) 27.4± 12.4 (14.5±8.7) 7.1 ± 5.6 (5.1±2.3)
40 41.8± 1.9 (197.2±1.8) 19.2± 6.9 (16.2±11.1) 5.0 ± 3.5 (5.5±2.1)
50 41.9± 1.8 (196.6±2.6) 16.0± 5.3 (18.4±11.3) 3.1 ± 2.7 (5.1±1.8)

Table 2: The real-world datasets and the performance of the algorithms. The set R for the
linear SVM algorithm and for datasets 1,5,6 had to be set to Λ to allow convergence.

Feat. Patt. Linear SVM l1 SVM GMEB
30 569 5.3±0.8 (27.3±0.3) 4.9±1.1 (16.4±1.3) 4.2±0.9 (6.0±0.3)
649 200/1800 0.3 (616) 3.5 (15) 0.2 (32)

1558 200/3080 5.3 (322) 4.7 (12) 5.5 (98)
2000 62 13.6±5.9 (1941.8±1.9) 10.7±4.4 (23.3±1.5) 10.7±4.4 (59.1±25.0)

6 345 33.1±3.5 (6.0±0.0) 33.6±3.6 (5.9±0.1) 34.2±4.4 (5.4±0.5)
8 768 22.8±1.5 (5.8±0.2) 22.9±1.4 (5.8±0.2) 22.5±1.8 (4.8±0.2)
13 297 17.5±1.9 (11.6±0.2) 16.8±1.6 (10.7±0.3) 15.5±2.0 (9.1±0.3)
34 351 11.7±2.6 (32.8±0.2) 12.0±2.3 (27.9±1.6) 10.0±2.3 (12.1±1.7)

4.3 Experimental results

Table 1 provides a comparison of the GMEB algorithm with the SVM algorithms on the
synthetic datasets. The Bayes error is 0.4%. For further numerical comparison see [3].
Note that the number of features selected by the l1 SVM and the GMEB algorithms increase
with the sample size. A possible explanation for this observation is that with only a few
training patterns a small training error can be achieved by many subsets containing a small
number of features, i.e. a sparse solution. The particular subset selected is essentially
random, leading to a large test error, possibly due to overfitting.

For all the synthetic datasets the GMEB algorithm clearly attained the lowest error rates.
On the real-world datasets it produced the lowest error rates and the smallest number of
features for the majority of datasets investigated.

4.4 Discussion

The GMEB algorithm performs comparatively well against the linear and l1 SVM algo-
rithms, in regard to both the test error and the number of selected features. A possible
explanation is that the l1 SVM algorithm performs both classification and feature selection
with the same variable w. In contrast, the GMEB algorithm performs the feature selection
and classification simultaneously, while using variables σ and w respectively. The use of
two variables also allows the GMEB algorithm to reduce the weight of a feature j with both
wj and σj , while the l1 SVM uses only wj . Perhaps this property of GMEB could explain
why it produces comparable (and at times better) results than the SVM algorithms both in
classification problems where feature selection is and is not required.



5 Summary and future work

This paper presented a feature selection algorithm motivated by minimizing a GE bound.
The global optimum of the objective function is found by solving a non-convex optimiza-
tion problem. The equivalent optimization problems technique reduces this task to a convex
problem. The dual problem formulation depends more weakly on the number of features d
and this enabled an extension of the GMEB algorithm to large scale classification problems.

The GMEB classifier is a linear classifier. Linear classifiers are the most important type of
classifiers in a feature selection framework because feature selection is highly susceptible
to overfitting. We believe that the GMEB algorithm is just the first of a series of algorithms
which may globally minimize increasingly tighter bounds on the generalization error.

Acknowledgment R.M. is partially supported by the fund for promotion of research at the Technion
and by the Ollendorff foundation of the Electrical Engineering department at the Technion.

A Change of variables

Consider optimization problem
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m.

(8)

Suppose φ : R
n → R

n is one-to-one, with image covering the problem domain D, i.e.,
φ(domφ) ⊇ D . We define functions f̃i as f̃i(z) = fi(φ(z)), i = 0, . . . ,m. Now consider
the problem

minimize f̃0(z)

subject to f̃i(z) ≤ 0, i = 1, . . . ,m,
(9)

with variable z. Problem (8) and (9) are said to be related by the change of variable x =
φ(z) and are equivalent: if x solves the problem (8), then z = φ−1(x) solves problem(9);
if z solves problem (9), then x = φ(z) solves problem (8).
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