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Abstract

The representation of acoustic signals at the cochlear nerve must serve a
wide range of auditory tasks that require exquisite sensitivity in both time
and frequency. Lewicki (2002) demonstrated that many of the filtering
properties of the cochlea could be explained in terms of efficient coding
of natural sounds. This model, however, did not account for properties
such as phase-locking or how sound could be encoded in terms of action
potentials. Here, we extend this theoretical approach with algorithm for
learning efficient auditory codes using a spiking population code. Here,
we propose an algorithm for learning efficient auditory codes using a
theoretical model for coding sound in terms of spikes. In this model,
each spike encodes the precise time position and magnitude of a local-
ized, time varying kernel function. By adapting the kernel functions to
the statistics natural sounds, we show that, compared to conventional
signal representations, the spike code achieves far greater coding effi-
ciency. Furthermore, the inferred kernels show both striking similarities
to measured cochlear filters and a similar bandwidth versus frequency
dependence.

1 Introduction

Biological auditory systems perform tasks that require exceptional sensitivity to both spec-
tral and temporal acoustic structure. This precision is all the more remarkable considering
these computations begin with an auditory code that consists of action potentials whose du-
ration is in milliseconds and whose firing in response to hair cell motion is probabilistic. In
computational audition, representing the acoustic signal is the first step in any algorithm,
and there are numerous approaches to this problem which differ in both their computa-
tional complexity and in what aspects of signal structure are extracted. The auditory nerve
representation subserves a wide variety of different auditory tasks and is presumably well-
adapted for these purposes. Here, we investigate the theoretical question of what computa-
tional principles might underlie cochlear processing and the representation of the auditory
nerve.

For sensory representations, a theoretical principle that has attracted considerable inter-
est is efficient coding. This posits that (assuming low noise) one goal of sensory coding



is to represent signals in the natural sensory environment efficiently, i.e. with minimal
redundancy [1-3]. Recently, it was shown that efficient coding of natural sounds could ex-
plain auditory nerve filtering properties and their organization as a population [4] and also
account for some non-linear properties of auditory nerve responses [5]. Although those
results provided an explanation for auditory nerve encoding of spectral information, they
fail to explain the encoding of temporal information. Here, we extend the standard efficient
coding model, which has an implicit stationarity assumption, to form efficient representa-
tions of non-stationary and time-relative acoustic structures.

2 An abstract model for auditory coding

In standard models of efficient coding, sensory signals are represented by vectors of fixed
length, and the representation is a linear transformation of the input pattern. A simple
method to encode temporal signals is to divide the signal into discrete blocks; however, this
approach has several drawbacks. First, the underlying acoustic structures have no relation
to the block boundaries, so elemental acoustic features may be split across blocks. Second,
this representation implicitly assumes that the signal structures are stationary, and provides
no way to represent time-relative structures such as transient sounds. Finally, this approach
has limited plausibility as a model of cochlear encoding. To address all of these problems,
we use a theoretical model in which sounds are represented as spikes [6,7]. In this model,
the signal, x(t), is encoded with a set of kernel functions, ¢1 . .. ¢y, that can be positioned
arbitrarily and independently in time. The mathematical form of the representation with

additive noise is
M ng,

2(t) =D S pm(t — ") + €(t), (1)
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where 7/™ and s7" are the temporal position and coefficient of the i‘" instance of kernel ¢,,,,
respectively. The notation n,, indicates the number of instances of ¢,,,, which need not be
the same across kernels. In addition, the kernels are not restricted in form or length.

The key theoretical abstraction of the model is that the signal is decomposed in terms of
discrete acoustic events, each of which has a precise amplitude and temporal position. We
interpret the analog amplitude values as representing a local population of auditory nerve
spikes. Thus, this theory posits that the purpose of the (binary) spikes at the auditory nerve
is to encode as accurately as possible the temporal position and amplitude of the acoustic
events defined by ¢, (t). The main questions we address are 1) encoding, i.e. what are the
optimal values of 7, and si* and 2) learning, i.e. what are the optimal kernel functions

Om (t).

2.1 Encoding

Finding the optimal representation of arbitrary signals in terms of spikes is a hard problem,
and currently there are no known biologically plausible algorithms that solve this problem
well [7]. There are reasons to believe that this problem can be solved (approximately) with
biological mechanisms, but for our purposes here, we compute the values of 7, and s}
for a given signal we using the matching pursuit algorithm [8]. It iteratively approximates
the input signal with successive orthogonal projections onto a basis. The signal can be
decomposed into

2(t) =< 2()pm > ¢m + Ra(t), )

where < x(t)¢,, > is the inner product between the signal and the kernel and is equiva-
lent to s in equation 1. The final term in equation 2, R, (t), is the residual signal after
approximating z(t) in the direction of ¢,,,. The projection with the largest magnitude inner
product will minimize the power of R, (t), thereby capturing the most structure possible
with a single kernel.
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Figure 1: A brief segment of the word canteen (input) is represented as a spike code (top).
A reconstruction of the speech based only on the few spikes shown (ovals in spike code) is
very accurate with relatively little residual error (reconstruction and residual). The colored
arrows and matching curves illustrate the correspondence between a few of the ovals and
the underlying acoustic structure represented by the kernel functions.

Equation 2 can be rewritten more generally as
R(t) =< Ry(t)bm > ém + RETH(), 3)

with RY(¢) = x(t) at the start of the algorithm. On each iteration, the current residual is
projected onto the basis. The projection with the largest inner product is subtracted out, and
its coefficient and time are recorded. This projection and subtraction leaves < R ()¢, >
¢nm orthogonal to the residual signal, R"*(t) and to all previous and future projections [8].
As a result, matching pursuit codes are composed of mutually orthogonal signal structures.
For the results reported here, the encoding was halted when s" fell below a preset threshold
(the spiking threshold).

Figure 1 illustrates the spike code model and its efficiency in representing speech. The spo-
ken word “canteen” was encoded as a set of spikes using a fixed set of kernel functions. The
kernels can have arbitrary shape and for illustration we have chosen gammatones (mathe-
matical approximations of cochlear filters) as the kernel functions. A brief segment from
input signal (1, Input) consists of three glottal pulses in the /a/ vowel. The resulting spike
code is show above it. Each oval represents the temporal position and center frequency of
an underlying kernel function, with oval size and gray value indicating kernel amplitude.
For four spikes, colored arrows and curves indicate the relationship between the ovals and
the acoustics events they represent. As evidenced from the figure, the very small set of spike
events is sufficient to produce a very accurate reconstruction of the sound (reconstruction
and residual).



2.2 Learning

We adapt the method used in [9] to train our kernel function. Equation 1 can be rewritten
in probabilistic form as

pla]®) = / p(2]®, 3)p(3)ds, @

where 5, an approximation of the posterior maximum, comes from the set of coefficient
generated by matching pursuit. We assume the noise in the likelihood, p(x|®, ), is
Gaussian and the prior, p(s), is sparse. The basis is updated by taking the gradient of
the log probability,

0 0
. log(p(z|®)) = 9o log(p(z|®, s)) + log(p(s)) ®)
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= 208%7[33— DD & dmlt =) (6)
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As noted by Olshausen (2002), equation 7 indicates that the kernels are updated in Hebbian
fashion, simply as a product of activity and residual [9] (i.e., the unit shifts its preferred
stimuli in the direction of the stimuli that just made it spike minus those elements already
encoded by other units). But in the case of the spike code, rather than updating for every
time-point, we need only update at times when the kernel spiked.

As noted earlier, the model can use kernels of any form or length. This capability also
extends to the learning algorithm such that it can learn functions of differing temporal ex-
tents, growing or shrinking them as needed. Low frequency functions and others requiring
longer temporal extent can be grown from shorter initial seeds, while brief functions can be
trimmed to speed processing and minimize the effects of over-fitting. Periodically during
training, a simple heuristic is used to trim or extend the kernels, ¢,,. The functions are
initially zero-padded. If learning causes the power of the padding to surpass a threshold,
the padding is extended. If the power of the padding plus an adjacent segment falls below
the threshold, the padding is trimmed from the end. Following the gradient step and length
adjustment, the kernels are again normalized and the next training signal is encoded.

3 Adapting kernels to natural sounds

The spike coding algorithm was used to learn kernel functions for two different classes
of sounds: human speech and music. For speech, the algorithm trained on a subset the
TIMIT Speech Corpus. Each training sample consisted of a single speaker saying a single
sentence. The signals were bandpass filtered to remove DC components of the signal and
to prevent aliasing from affecting learning. The signals were all normalized to a maximum
amplitude of 1.

Each of the 30 kernel functions were initialized to random Gaussian vectors of 100 sam-
ples in duration. The threshold below which spikes (values of s,,) were ignored during
the encoding stage was set at 0.1, which allowed for an initial encoding of ~ 12dB signal-
to-noise ratio (SNR). As indicated by equation 7, the gradient depends on the residual. If
the residual drops near zero or is predominately noise then learning is impeded. By slowly
increasing the spiking threshold as the average residual drops, we retain some signal struc-
ture in the residual for further training. At the same time, the power distribution of natural
sounds means that high frequency signal components might fall entirely below threshold,
preventing their being learned. One possible solution that was not implemented here is
using separate thresholds for each kernel.
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Figure 2: When adapted to speech, kernel functions become asymmetric sinusoids (smooth
curves in red, zero padding has been removed for plotting), with sharp attacks and gradual
decays. They also adapt in temporal extent, with longer and shorter functions emerging
from the same initial length. These learned kernels are strikingly similar to revcor functions
obtained from cat auditory nerve fibers (noisy curves in blue). The revcor functions were
normalized and aligned in phase with the learned kernels but are otherwise unaltered (no
smoothing or fitting).

Figure 2 shows the kernel functions trained on speech (red curves). All are temporally
localized, bandpass filters. They are similar in form to previous results but with several
notable differences. Most notably, the learned kernel functions are temporally asymmetric,
with sharp attack and gradual decay which matches physiological filtering properties of
the auditory nerves. Each kernel function in figure 2 is overlayed on a so-called reverse-
correlation (revcor) function which is an estimate of the physiological impulse response
function for an individual auditory nerve fiber [10]. The revcor functions have been nor-
malized, and the most closely matching in terms of center frequency and envelop were
phase aligned with learned kernels by hand. No additional fitting was done, yet there is
a striking similarity between the inferred kernels functions and physiologically estimated
reverse-correlation functions. For 25 out of 30 kernel functions, we found a close match
to the physiological revcor functions (correlation > 0.8). Of the remaining filters, all
possessed the same basic asymmetric filter structure show in figure 2 and showed a more
modest match to the data (correlation > 0.5).

In the standard efficient coding model, the signal and the basis functions are all the same
length. In order for the basis to span the signal space in the time domain and still be tem-
porally localized, some of the learned functions are essentially replications of one another.
In the spike coding model, this redundancy does not occur because coding is time-relative.
Kernel functions can be placed arbitrarily in time such that one kernel function can code for
similar acoustic events at different points in the signal. So, temporally extended functions
can be learned without causing an explosion in the number of high-frequency functions
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Figure 3: The center frequency vs. bandwidth distribution of learned kernel functions (red
squares) plotted against physiological data (blue pluses).

needed to span the signal space. Because cochlear coding also shares this quality, it might
also allow more precise predictions about the population characteristics of cochlear filters.

Individually, the learned kernel functions closely match the linear component of cochlear
filters. We can also compare the learned kernels against physiological data in terms of
population distributions. In frequency space, our learned population follows the approxi-
mately logarithmic distribution found in the cochlea, a more natural distribution of filters
compared to previous findings, where the need to tile high-frequency space biased the dis-
tribution [4]. Figure 3 presents a log-log scatter-plot of the center frequency of each kernel
versus its bandwidth (red squares). Plotted on the same axis are two sets of empirical data.
One set (blue pluses) comes from a large corpus of reverse-correlation functions derived
from physiological recordings of auditory nerve fibers [10]. Both the slope and distribu-
tion of the learned kernel functions match those of the empirical data. The distribution of
learned kernels even appears to follow shifts in the slope of the empirical data at the high
and low frequencies.

4 Coding Efficiency

We can quantify the coding efficiency of the learned kernel functions in bits so as to ob-
jectively evaluate the model and compare it quantitatively to other signal representations.
Rate-fidelity provides a useful objective measure for comparison. Here we use a method
developed in [7] which we now briefly describe. Computing the rate-fidelity curves begins
with associated pairs of coefficients and time values, {s}”, 77"}, which are initially stored
as double precision variables. Storing the original time values referenced to the start of
the signal is costly because their range can be arbitrarily large and the distribution of time
points is essentially uniform. Storing only the time since the last spike, 67", greatly re-
stricts the range and produces a variable that approximately follows a gamma distribution.

Rate-fidelity curves are generated by varying the precision of the code, {s!,d7/"}, and
computing the resulting fidelity through reconstruction. A uniform quantizer is used to



vary the precision of the code between 1 and 16 bits. At all levels of precision, the bin
widths for quantization are selected so that equal numbers of values fall in each bin. All
s or §7;" that fall within a bin are recoded to have the same value. We use the mean of
the non-quantized values that fell within the bin. s} and 7" are quantized independently.

Treating the quantized values as samples from a random variable, we estimate a code’s
entropy (bits/coefficient) from histograms of the values. Rate is then the product of the
estimated entropy of the quantized variables and the number of coefficients per second for
a given signal. At each level of precision the signal is reconstructed based on the quantized
values, and an SNR for the code is computed. This process was repeated across a set of
signals and the results were averaged to produce rate-fidelity curves.

Coding efficiency can be measured in nearly identical fashion for other signal represen-
tations. For comparison we generate rate-fidelity curves for Fourier and wavelet repre-
sentations as well as for a spike code using either learned kernel functions or gammatone
functions. Fourier coefficients were obtained for each signal via Fast Fourier Transform.
The real and imaginary parts were quantized independently, and the rate was based on
the estimated entropy of the quantized coefficients. Reconstruction was simply the in-
verse Fourier transform of the quantized coefficients. Similarly, coding efficiency using
Daubechies wavelets was estimated using Matlab’s discrete wavelet transform and inverse
wavelet transform functions. Curves for the gammatone spike code were generated as de-
scribed above.

Figure 4 shows the rate-fidelity curves calculated for speech from the TIMIT speech corpus
[11]. At low bit rates (below 40 Kbps), both of the spike codes produce more efficient
representations of speech than the other traditional representations. For example, between
10 and 20 Kbps the fidelity of the spike representation of speech using learned kernels is
approximately twice that of either Fourier or wavelets. The learned kernels are also sightly
but significantly more efficient than spike codes using gammatones, particularly in the case
of music. The kernel functions trained on music are more extended in time and appear
better able to describe harmonic structure than the gammatones. As the number of spikes
increases the spike codes become less efficient, with the curve for learned kernels dropping
more rapidly than for gammatones. Encoding sounds to very high precision requires setting
the spike threshold well below the threshold used in training. It may be that the learned
kernel functions are not well adapted to the statistics of very low amplitude sounds. At
higher bit rates (above 60 Kbps) the Fourier and wavelet representations produce much
higher rate-fidelity curves than either spike codes.

5 Conclusion

We have presented a theoretical model of auditory coding in which temporal kernels are
the elemental features of natural sounds. The essential property of these features is that
they can describe acoustic structure at arbitrary time points, and can thus represent non-
stationary, transient sounds in a compact and shift-invariant manner. We have shown that
by using this time-relative spike coding model and adapting the kernel shapes to efficiently
code natural sounds, it is possible to account for both the detailed filter shapes of audi-
tory nerve fibers and their distribution as a population. Moreover, we have demonstrated
quantitatively that, at a broad range of low to medium bit rates, this type of code is sub-
stantially more efficient than conventional signal representations such as Fourier or wavelet
transforms.

References

[1] H. B. Barlow. Possible principles underlying the transformation of sensory messages.
In W. A. Rosenbluth, editor, Sensory Communication, pages 217-234. MIT Press,



40

35+

30

25

SNR (dB)
S

15

10

Spike Code: adapted
Spike Code: gammatone
Block Code: wavelet E
Block Code: Fourier

60 70 80 90

g LT
o

0 10 20 30 40
Rate (Kbps)
Figure 4: Rate-Fidelity curves speech were made for spike coding using both learned ker-

nels (red) and gammatones (light blue) as well as using discrete Daubechies wavelet trans-
form (black) and Fourier transform (dark blue).

Cambridge, 1961.

[2] J.J. Atick. Could information-theory provide an ecological theory of sensory process-
ing. Network, 3(2):213-251, 1992.

[3] E. Simoncelli and B. Olshausen. Natural image statistics and neural representation.
Annual Review of Neuroscience, 24:1193-1216, 2001.

[4] M. S. Lewicki. Efficient coding of natural sounds. Nature Neuroscience, 5(4):356—
363, 2002.

[5] O. Schwartz and E. P. Simoncelli. Natural signal statistics and sensory gain control.
Nature Neuroscience, 4:819-825, 2001.

[6] M. S. Lewicki. Efficient coding of time-varying patterns using a spiking population
code. In R. P. N. Rao, B. A. Olshausen, and M. S. Lewicki, editors, Probabilistic
Models of the Brain: Perception and Neural Function, pages 241-255. MIT Press,
Cambridge, MA, 2002.

[7] E. C. Smith and M. S. Lewicki. Efficient coding of time-relative structure using
spikes. Neural Computation, 2004.

[8] S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. [EEE
Transactions on Signal Processing, 41(12):3397-3415, 1993.

[9] B. A. Olshausen. Sparse codes and spikes. In R. P. N. Rao, B. A. Olshausen, and M. S.
Lewicki, editors, Probabilistic Models of the Brain: Perception and Neural Function,
pages 257-272. MIT Press, Cambridge, MA, 2002.

[10] L. H. Carney, M. J. McDuffy, and 1. Shekhter. Frequency glides in the impulse
responses of auditory-nerve fibers. Journal of the Acoustical Society of America,
105:2384-2391, 1999.

[11] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren,
and V. Zue. Timit acoustic-phonetic continuous speech corpus, 1990.



