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Abstract

Linear Discriminant Analysis (LDA) is a well-known scheme for feature
extraction and dimension reduction. It has been used widely in many ap-
plications involving high-dimensional data, such as face recognition and
image retrieval. An intrinsic limitation of classical LDA is the so-called
singularity problem, that is, it fails when all scatter matrices are singu-
lar. A well-known approach to deal with the singularity problem is to
apply an intermediate dimension reduction stage using Principal Com-
ponent Analysis (PCA) before LDA. The algorithm, called PCA+LDA,
is used widely in face recognition. However, PCA+LDA has high costs
in time and space, due to the need for an eigen-decomposition involving
the scatter matrices.
In this paper, we propose a novel LDA algorithm, namely 2DLDA, which
stands for 2-Dimensional Linear Discriminant Analysis. 2DLDA over-
comes the singularity problem implicitly, while achieving efficiency. The
key difference between 2DLDA and classical LDA lies in the model for
data representation. Classical LDA works with vectorized representa-
tions of data, while the 2DLDA algorithm works with data in matrix
representation. To further reduce the dimension by 2DLDA, the combi-
nation of 2DLDA and classical LDA, namely 2DLDA+LDA, is studied,
where LDA is preceded by 2DLDA. The proposed algorithms are ap-
plied on face recognition and compared with PCA+LDA. Experiments
show that 2DLDA and 2DLDA+LDA achieve competitive recognition
accuracy, while being much more efficient.

1 Introduction

Linear Discriminant Analysis [2, 4] is a well-known scheme for feature extraction and di-
mension reduction. It has been used widely in many applications such as face recognition
[1], image retrieval [6], microarray data classification [3], etc. Classical LDA projects the
data onto a lower-dimensional vector space such that the ratio of the between-class dis-
tance to the within-class distance is maximized, thus achieving maximum discrimination.
The optimal projection (transformation) can be readily computed by applying the eigen-
decomposition on the scatter matrices. An intrinsic limitation of classical LDA is that its
objective function requires the nonsingularity of one of the scatter matrices. For many ap-
plications, such as face recognition, all scatter matrices in question can be singular since
the data is from a very high-dimensional space, and in general, the dimension exceeds the



number of data points. This is known as the undersampled or singularity problem [5].

In recent years, many approaches have been brought to bear on such high-dimensional, un-
dersampled problems, including pseudo-inverse LDA, PCA+LDA, and regularized LDA.
More details can be found in [5]. Among these LDA extensions, PCA+LDA has received a
lot of attention, especially for face recognition [1]. In this two-stage algorithm, an interme-
diate dimension reduction stage using PCA is applied before LDA. The common aspect of
previous LDA extensions is the computation of eigen-decomposition of certain large ma-
trices, which not only degrades the efficiency but also makes it hard to scale them to large
datasets.

In this paper, we present a novel approach to alleviate the expensive computation of the
eigen-decomposition in previous LDA extensions. The novelty lies in a different data rep-
resentation model. Under this model, each datum is represented as a matrix, instead of as
a vector, and the collection of data is represented as a collection of matrices, instead of as
a single large matrix. This model has been previously used in [8, 9, 7] for the generaliza-
tion of SVD and PCA. Unlike classical LDA, we consider the projection of the data onto a
space which is the tensor product of two vector spaces. We formulate our dimension reduc-
tion problem as an optimization problem in Section 3. Unlike classical LDA, there is no
closed form solution for the optimization problem; instead, we derive a heuristic, namely
2DLDA. To further reduce the dimension, which is desirable for efficient querying, we con-
sider the combination of 2DLDA and LDA, namely 2DLDA+LDA, where the dimension
of the space transformed by 2DLDA is further reduced by LDA.

We perform experiments on three well-known face datasets to evaluate the effectiveness
of 2DLDA and 2DLDA+LDA and compare with PCA+LDA, which is used widely in face
recognition. Our experiments show that: (1) 2DLDA is applicable to high-dimensional
undersampled data such as face images, i.e., it implicitly avoids the singularity problem
encountered in classical LDA; and (2) 2DLDA and 2DLDA+LDA have distinctly lower
costs in time and space than PCA+LDA, and achieve classification accuracy that is com-
petitive with PCA+LDA.

2 An overview of LDA

In this section, we give a brief overview of classical LDA. Some of the important notations
used in the rest of this paper are listed in Table 1.

Given a data matrix A ∈ IRN×n, classical LDA aims to find a transformation G ∈ IRN×�

that maps each column ai of A, for 1 ≤ i ≤ n, in the N -dimensional space to a vector bi in
the �-dimensional space. That is G : ai ∈ IRN → bi = GT ai ∈ IR�(� < N). Equivalently,
classical LDA aims to find a vector space G spanned by {gi}�i=1, where G = [g1, · · · , g�],
such that each ai is projected onto G by (gT

1 · ai, · · · , gT
� · ai)T ∈ IR�.

Assume that the original data in A is partitioned into k classes as A = {Π1, · · · ,Πk}, where
Πi contains ni data points from the ith class, and

∑k
i=1 ni = n. Classical LDA aims to find

the optimal transformation G such that the class structure of the original high-dimensional
space is preserved in the low-dimensional space.

In general, if each class is tightly grouped, but well separated from the other classes, the
quality of the cluster is considered to be high. In discriminant analysis, two scatter ma-
trices, called within-class (Sw) and between-class (Sb) matrices, are defined to quantify
the quality of the cluster, as follows [4]: Sw =

∑k
i=1

∑
x∈Πi

(x − mi)(x − mi)T , and

Sb =
∑k

i=1 ni(mi−m)(mi−m)T , where mi = 1
ni

∑
x∈Πi

x is the mean of the ith class,

and m = 1
n

∑k
i=1

∑
x∈Πi

x is the global mean.



Notation Description
n number of images in the dataset
k number of classes in the dataset
Ai ith image in matrix representation
ai ith image in vectorized representation
r number of rows in Ai

c number of columns in Ai

N dimension of ai (N = r ∗ c)
Πj jth class in the dataset
L transformation matrix (left) by 2DLDA
R transformation matrix (right) by 2DLDA
I number of iterations in 2DLDA
Bi reduced representation of Ai by 2DLDA
�1 number of rows in Bi

�2 number of columns in Bi

Table 1: Notation

It is easy to verify that trace(Sw) measures the closeness of the vectors within the classes,
while trace(Sb) measures the separation between classes. In the low-dimensional space
resulting from the linear transformation G (or the linear projection onto the vector space G),
the within-class and between-class matrices become SL

b = GT SbG, and SL
w = GT SwG.

An optimal transformation G would maximize trace(SL
b ) and minimize trace(SL

w). Com-
mon optimizations in classical discriminant analysis include (see [4]):

max
G

{
trace((SL

w)−1SL
b )
}

and min
G

{
trace((SL

b )−1SL
w)
}

. (1)

The optimization problems in Eq. (1) are equivalent to the following generalized eigenvalue
problem: Sbx = λSwx, for λ �= 0. The solution can be obtained by applying an eigen-
decomposition to the matrix S−1

w Sb, if Sw is nonsingular, or S−1
b Sw, if Sb is nonsingular.

There are at most k − 1 eigenvectors corresponding to nonzero eigenvalues, since the rank
of the matrix Sb is bounded from above by k − 1. Therefore, the reduced dimension by
classical LDA is at most k − 1. A stable way to compute the eigen-decomposition is to
apply SVD on the scatter matrices. Details can be found in [6].

Note that a limitation of classical LDA in many applications involving undersampled data,
such as text documents and images, is that at least one of the scatter matrices is required to
be nonsingular. Several extensions, including pseudo-inverse LDA, regularized LDA, and
PCA+LDA, were proposed in the past to deal with the singularity problem. Details can be
found in [5].

3 2-Dimensional LDA

The key difference between classical LDA and the 2DLDA that we propose in this paper
is in the representation of data. While classical LDA uses the vectorized representation,
2DLDA works with data in matrix representation.

We will see later in this section that the matrix representation in 2DLDA leads to an eigen-
decomposition on matrices with much smaller sizes. More specifically, 2DLDA involves
the eigen-decomposition of matrices with sizes r×r and c×c, which are much smaller than
the matrices in classical LDA. This dramatically reduces the time and space complexities
of 2DLDA over LDA.



Unlike classical LDA, 2DLDA considers the following (�1×�2)-dimensional space L⊗R,
which is the tensor product of the following two spaces: L spanned by {ui}�1i=1 and
R spanned by {vi}�2i=1. Define two matrices L = [u1, · · · , u�1 ] ∈ IRr×�1 and R =
[v1, · · · , v�2 ] ∈ IRc×�2 . Then the projection of X ∈ IRr×c onto the space L ⊗ R is
LT XR ∈ R�1×�2 .

Let Ai ∈ IRr×c, for i = 1, · · · , n, be the n images in the dataset, clustered into classes
Π1, · · · ,Πk, where Πi has ni images. Let Mi = 1

ni

∑
X∈Πi

X be the mean of the ith

class, 1 ≤ i ≤ k, and M = 1
n

∑k
i=1

∑
X∈Πi

X be the global mean. In 2DLDA, we
consider images as two-dimensional signals and aim to find two transformation matrices
L ∈ IRr×�1 and R ∈ IRc×�2 that map each Ai ∈ IRr×c, for 1 ≤ i ≤ n, to a matrix
Bi ∈ IR�1×�2 such that Bi = LT AiR.

Like classical LDA, 2DLDA aims to find the optimal transformations (projections) L and
R such that the class structure of the original high-dimensional space is preserved in the
low-dimensional space.

A natural similarity metric between matrices is the Frobenius norm [8]. Under this metric,
the (squared) within-class and between-class distances Dw and Db can be computed as
follows:

Dw =
k∑

i=1

∑
X∈Πi

||X −Mi||2F , Db =
k∑

i=1

ni||Mi −M ||2F .

Using the property of the trace, that is, trace(MMT ) = ||M ||2F , for any matrix M , we can
rewrite Dw and Db as follows:

Dw = trace

(
k∑

i=1

∑
X∈Πi

(X −Mi)(X −Mi)T

)
,

Db = trace

(
k∑

i=1

ni(Mi −M)(Mi −M)T

)
.

In the low-dimensional space resulting from the linear transformations L and R, the within-
class and between-class distances become

D̃w = trace

(
k∑

i=1

∑
X∈Πi

LT (X −Mi)RRT (X −Mi)T L

)
,

D̃b = trace

(
k∑

i=1

niL
T (Mi −M)RRT (Mi −M)T L

)
.

The optimal transformations L and R would maximize D̃b and minimize D̃w. Due to
the difficulty of computing the optimal L and R simultaneously, we derive an iterative
algorithm in the following. More specifically, for a fixed R, we can compute the optimal
L by solving an optimization problem similar to the one in Eq. (1). With the computed
L, we can then update R by solving another optimization problem as the one in Eq. (1).
Details are given below. The procedure is repeated a certain number of times, as discussed
in Section 4.

Computation of L

For a fixed R, D̃w and D̃b can be rewritten as

D̃w = trace
(
LT SR

wL
)
, D̃b = trace

(
LT SR

b L
)
,



Algorithm 2DLDA(A1, · · · , An, �1, �2)
Input: A1, · · · , An, �1, �2
Output: L, R, B1, · · · , Bn

1. Compute the mean Mi of ith class for each i as Mi = 1
ni

∑
X∈Πi

X;

2. Compute the global mean M = 1
n

∑k
i=1

∑
X∈Πi

X;
3. R0 ← (I�2 , 0)T ;
4. For j from 1 to I
5. SR

w ←
∑k

i=1

∑
X∈Πi

(X −Mi)Rj−1R
T
j−1(X −Mi)T ,

SR
b ←

∑k
i=1 ni(Mi −M)Rj−1R

T
j−1(Mi −M)T ;

6. Compute the first �1 eigenvectors {φL
� }�1�=1 of

(
SR

w

)−1
SR

b ;
7. Lj ←

[
φL

1 , · · · , φL
�1

]
8. SL

w ←
∑k

i=1

∑
X∈Πi

(X −Mi)T LjL
T
j (X −Mi),

SL
b ←

∑k
i=1 ni(Mi −M)T LjL

T
j (Mi −M);

9. Compute the first �2 eigenvectors {φR
� }�2�=1 of

(
SL

w

)−1
SL

b ;
10. Rj ←

[
φR

1 , · · · , φR
�2

]
;

11. EndFor
12. L← LI , R← RI ;
13. B� ← LT A�R, for � = 1, · · · , n;
14. return(L,R,B1, · · · , Bn).

where

SR
w =

k∑
i=1

∑
X∈Πi

(X −Mi)RRT (X −Mi)T , SR
b =

k∑
i=1

ni(Mi −M)RRT (Mi −M)T .

Similar to the optimization problem in Eq. (1), the optimal L can be computed by solving
the following optimization problem: maxL trace

(
(LT SR

wL)−1(LT SR
b L)

)
. The solution

can be obtained by solving the following generalized eigenvalue problem: SR
wx = λSR

b x.
Since SR

w is in general nonsingular, the optimal L can be obtained by computing an eigen-

decomposition on
(
SR

w

)−1
SR

b . Note that the size of the matrices SR
w and SR

b is r × r,
which is much smaller than the size of the matrices Sw and Sb in classical LDA.

Computation of R

Next, consider the computation of R, for a fixed L. A key observation is that D̃w and D̃b

can be rewritten as

D̃w = trace
(
RT SL

wR
)
, D̃b = trace

(
RT SL

b R
)
,

where

SL
w =

k∑
i=1

∑
X∈Πi

(X −Mi)T LLT (X −Mi), SL
b =

k∑
i=1

ni(Mi −M)T LLT (Mi −M).

This follows from the following property of trace, that is, trace(AB) = trace(BA), for any
two matrices A and B.

Similarly, the optimal R can be computed by solving the following optimization problem:
maxR trace

(
(RT SL

wR)−1(RT SL
b R)

)
. The solution can be obtained by solving the follow-

ing generalized eigenvalue problem: SL
wx = λSL

b x. Since SL
w is in general nonsingular,



the optimal R can be obtained by computing an eigen-decomposition on
(
SL

w

)−1
SL

b . Note
that the size of the matrices SL

w and SL
b is c× c, much smaller than Sw and Sb.

The pseudo-code for the 2DLDA algorithm is given in Algorithm 2DLDA. It is clear that
the most expensive steps in Algorithm 2DLDA are in Lines 5, 8 and 13 and the total
time complexity is O(nmax(�1, �2)(r + c)2I), where I is the number of iterations. The
2DLDA algorithm depends on the initial choice R0. Our experiments show that choosing
R0 = (I�2 , 0)T , where I�2 is the identity matrix, produces excellent results. We use this
initial R0 in all the experiments.

Since the number of rows (r) and the number of columns (c) of an image Ai are generally
comparable, i.e., r ≈ c ≈ √N , we set �1 and �2 to a common value d in the rest of
this paper, for simplicity. However, the algorithm works in the general case. With this
simplification, the time complexity of the 2DLDA algorithm becomes O(ndNI).

The space complexity of 2DLDA is O(rc) = O(N). The key to the low space complexity
of the algorithm is that the matrices SR

w , SR
b , SL

w , and SL
b can be formed by reading the

matrices A� incrementally.

3.1 2DLDA+LDA

As mentioned in the Introduction, PCA is commonly applied as an intermediate dimension-
reduction stage before LDA to overcome the singularity problem of classical LDA. In this
section, we consider the combination of 2DLDA and LDA, namely 2DLDA+LDA, where
the dimension by 2DLDA is further reduced by LDA, since small reduced dimension is
desirable for efficient querying. More specifically, in the first stage of 2DLDA+LDA, each
image Ai ∈ IRr×c is reduced to Bi ∈ IRd×d by 2DLDA, with d < min(r, c). In the second
stage, each Bi is first transformed to a vector bi ∈ IRd2

(matrix-to-vector alignment), then
bi is further reduced to bL

i ∈ IRk−1 by LDA with k − 1 < d2, where k is the number
of classes. Here, “matrix-to-vector alignment” means that the matrix is transformed to a
vector by concatenating all its rows together consecutively.

The time complexity of the first stage by 2DLDA is O(ndNI). The second stage applies
classical LDA to data in d2-dimensional space, hence takes O(n(d2)2), assuming n > d2.
Hence the total time complexity of 2DLDA+LDA is O

(
nd(NI + d3)

)
.

4 Experiments

In this section, we experimentally evaluate the performance of 2DLDA and 2DLDA+LDA
on face images and compare with PCA+LDA, used widely in face recognition. For
PCA+LDA, we use 200 principal components in the PCA stage, as it produces good overall
results. All of our experiments are performed on a P4 1.80GHz Linux machine with 1GB
memory. For all the experiments, the 1-Nearest-Neighbor (1NN) algorithm is applied for
classification and ten-fold cross validation is used for computing the classification accuracy.

Datasets: We use three face datasets in our study: PIX, ORL, and PIE, which are
publicly available. PIX (available at http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-
hard/), contains 300 face images of 30 persons. The image size is 512 × 512. We
subsample the images down to a size of 100 × 100 = 10000. ORL (available at
http://www.uk.research.att.com/facedatabase.html), contains 400 face images of 40 per-
sons. The image size is 92 × 112. PIE is a subset of the CMU–PIE face image dataset
(available at http://www.ri.cmu.edu/projects/project 418.html). It contains 6615 face im-
ages of 63 persons. The image size is 640 × 480. We subsample the images down to a size
of 220 × 175 = 38500. Note that PIE is much larger than the other two datasets.
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Figure 1: Effect of the number of iterations on 2DLDA and 2DLDA+LDA using the three
face datasets; PIX, ORL and PIE (from left to right).

The impact of the number, I , of iterations: In this experiment, we study the effect of
the number of iterations (I in Algorithm 2DLDA) on 2DLDA and 2DLDA+LDA. The
results are shown in Figure 1, where the x-axis denotes the number of iterations, and the
y-axis denotes the classification accuracy. d = 10 is used for both algorithms. It is clear
that both accuracy curves are stable with respect to the number of iterations. In general,
the accuracy curves of 2DLDA+LDA are slightly more stable than those of 2DLDA. The
key consequence is that we only need to run the “for” loop (from Line 4 to Line 11) in
Algorithm 2DLDA only once, i.e., I = 1, which significantly reduces the total running
time of both algorithms.

The impact of the value of the reduced dimension d: In this experiment, we study the
effect of the value of d on 2DLDA and 2DLDA+LDA, where the value of d determines the
dimensionality in the transformed space by 2DLDA. We did extensive experiments using
different values of d on the face image datasets. The results are summarized in Figure 2,
where the x-axis denotes the values of d (between 1 and 15) and the y-axis denotes the
classification accuracy with 1-Nearest-Neighbor as the classifier. As shown in Figure 2, the
accuracy curves on all datasets stabilize around d = 4 to 6.

Comparison on classification accuracy and efficiency: In this experiment, we eval-
uate the effectiveness of the proposed algorithms in terms of classification accuracy and
efficiency and compare with PCA+LDA. The results are summarized in Table 2. We can
observe that 2DLDA+LDA has similar performance as PCA+LDA in classification, while
it outperforms 2DLDA. Hence the LDA stage in 2DLDA+LDA not only reduces the di-
mension, but also increases the accuracy. Another key observation from Table 2 is that
2DLDA is almost one order of magnitude faster than PCA+LDA, while, the running time
of 2DLDA+LDA is close to that of 2DLDA.

Hence 2DLDA+LDA is a more effective dimension reduction algorithm than PCA+LDA,
as it is competitive to PCA+LDA in classification and has the same number of reduced
dimensions in the transformed space, while it has much lower time and space costs.

5 Conclusions

An efficient algorithm, namely 2DLDA, is presented for dimension reduction. 2DLDA is
an extension of LDA. The key difference between 2DLDA and LDA is that 2DLDA works
on the matrix representation of images directly, while LDA uses a vector representation.
2DLDA has asymptotically minimum memory requirements, and lower time complexity
than LDA, which is desirable for large face datasets, while it implicitly avoids the singu-
larity problem encountered in classical LDA. We also study the combination of 2DLDA
and LDA, namely 2DLDA+LDA, where the dimension by 2DLDA is further reduced by
LDA. Experiments show that 2DLDA and 2DLDA+LDA are competitive with PCA+LDA,
in terms of classification accuracy, while they have significantly lower time and space costs.
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Figure 2: Effect of the value of the reduced dimension d on 2DLDA and 2DLDA+LDA
using the three face datasets; PIX, ORL and PIE (from left to right).

Dataset PCA+LDA 2DLDA 2DLDA+LDA
Accuracy Time(Sec) Accuracy Time(Sec) Accuracy Time(Sec)

PIX 98.00% 7.73 97.33% 1.69 98.50% 1.73
ORL 97.75% 12.5 97.50% 2.14 98.00% 2.19
PIE — — 99.32% 153 100% 157

Table 2: Comparison on classification accuracy and efficiency: “—” means that PCA+LDA
is not applicable for PIE, due to its large size. Note that PCA+LDA involves an eigen-
decomposition of the scatter matrices, which requires the whole data matrix to reside in
main memory.
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