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Abstract

Motor control depends on sensory feedback in multiple modalities with
different latencies. In this paper we consider within the framework of re-
inforcement learning how different sensory modalities can be combined
and selected for real-time, optimal movement control. We propose an
actor-critic architecture with multiple modules, whose output are com-
bined using a softmax function. We tested our architecture in a simu-
lation of a sequential reaching task. Reaching was initially guided by
visual feedback with a long latency. Our learning scheme allowed the
agent to utilize the somatosensory feedback with shorter latency when
the hand is near the experienced trajectory. In simulations with different
latencies for visual and somatosensory feedback, we found that the agent
depended more on feedback with shorter latency.

1 Introduction

For motor response, the brain relies on several modalities. These may carry different infor-
mation. For example, vision keeps us updated on external world events, while somatosen-
sation gives us detailed information about the state of the motor system. For most human
behaviour, both are crucial for optimal performance.

However, modalities may also differ in latency. For example, information may be perceived
faster by the somatosensory pathway than the visual. For quick responses it would be
reasonable that the modality with shorter latency is more important. The slower modality
would be useful if it carries additional information, for example when we have to attend to
a visual cue.

There has been a lot of research on modular organisation where each module is an expert of
a particular part of the state space (e.g. [1]). We address questions concerning modules with



different feedback delays, and how they are used for real-time motor control. How does the
latency affect the influence of a modality over action? How can modalities be combined?
Here, we propose an actor-critic framework, where modules compete for influence over
action by reinforcement. First, we present the generic framework and learning algorithm.
Then, we apply our model to a visuomotor sequence learning task, and give details of the
simulation results.

2 General framework

Figure 1: The general framework.

This section describes the generic concepts
of our model: a set of modules with de-
layed feedback, a function for combining
them and a learning algorithm.

2.1 Network architecture

Consider M modules, where each module
has its own feedback signal ym(x(t−τm))
(m = 1, 2, ..,M) computed from the state
of the environment x(t). Each module has
a corresponding time delay τm (see figure
1). (The same feedback signals are used
to compute the critic, see the next subsec-
tion). Each module outputs a population-
coded output am(t), where each element
am

j (j = 1, 2, ..J) corresponds to the mo-
tor output vector uj , which represents, for
example, joint torques. The output of an
actor is given by a function approximator
am(t) = f(ym(t − τm);wm) with param-
eters wm.

The actual motor command u ∈ RD is given by combination of population vector outputs
am of the modules. Here we consider the use of softmax combination. The probablity of
taking j-th motor output vector is given by
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exp
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am

j

)
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exp

(

β
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j
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where β is the inverse temperature, controlling the stochasticity. At each moment, one of
the motor command vectors is selected as p(u(t) = ūj) = πj(t). We define q(t) to be
a binary vector of J elements where the one corresponding to the chosen action is 1 and
others 0.

There is no explicit mechanism in the architecture that explicitly favour a module with
shorter latency. Instead, we test whether a reinforcement learning algorithm can learn to
select the modules which are more useful to the agent.

2.2 Learning algorithm

Our model is a form of the continuous actor-critic [2]. The function of the critic is to
estimate the expected future reward, i.e. to learn the value function



V = V (y1(t − τ1),y2(t − τ2), ..,yM (t − τM );wc)

where wc is a set of trainable parameters. The temporal difference (TD) error δTD is the
discrepancy between expected and actual reward r(t). In its continuous form:

δTD(t) = r(t) −
1

τTD
V (t) + V̇ (t)

where τTD is the future reward discount time constant.

The TD error is used to update the parameters for both the critic, and the actor, which in
our framework is the set of modules.

Learning of each actor module is guided by the action deviation signal

Ej(t) =
(qj(t) − πj(t))

2

2

which is the difference between the its output and the action that was actually selected.

Parameters of the critic and actors are updated using eligibility traces

ėc
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ec
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where k is the index of parameters and κ is a time constant. The trace for m-th actor is
given from

∂Ej(t)

∂wm
kj

= (qj(t) − πj(t))
∂πj(t)

∂wm
kj

The parameters are updated by gradient descent as

ẇc
k = αδTD(t)ec

k(t) ẇm
kj = αδTD(t)em

kj(t)

where α denotes the learning rate.

2.3 Neuroanatomical correlates

Our network architecture is modeled to resemble the function of the basal ganglia-
thalamocortical (BG-TC) system to select and learn actions for goal-directed movement.
Actor-critic models of the basal ganglia has been proposed by many (e.g. [3], [4]). The
modular organisation of the BG-TC loop circuits ([5], [6]), where modules depends on
different sensory feedback, implies that the actor-critic depends on several modules.

3 An example application

To demonstrate our paradigm we exemplify by a motor sequence learning task, inspired by
“the n x n task”, an experimental paradigm where monkeys and humans learn a sequence
of reaching movements, where error performance improved across days, and performance
time decreased across months [7]. The results from these experiments suggested that the
influence of the motor BG-TC loop for motor execution is relatively stronger for learned
sequences than for new ones, compared to the prefrontal BG-TC loop. In our model im-
plementation, we want to investigate how the feedback delay affects the influence of visual
and sensorimotor modalities when learning a stereotype real-time motor sequence. In our
implementation (see figure 2), we use two modules, one “visual”, and one “motor”, corre-
sponding to visual and somatosensory feedback respectively. The visual module represents



a preknown, visually guided reaching policy for arbitrary start and endpoints within reach.
This module does not learn. The motor module represents the motor skill memory to be
learned. It gives zero output initially, but learn by associating reinforcement with sequences
of actions. The controlled object is a 2DOF arm, for which the agent gives a joint torque
motor command, with action selection sampled at 100 Hz.

3.1 Environment

Figure 2: Implementation of the exam-
ple simulation. The visual module is
fed back the hand position {ξhand

1
, ξhand

2
}

and the position of the active target
{ξtarget

1
, ξtarget

2
}, while the motor module

is fed back a population code represent-
ing the joint angles {θ1, θ2}. S : Start, G
: Goal. See text for further details.

The environment consists of a 2DOF arm
(both links are 0.3 m long and 0.1 m in
diam., weight 1.0 kg), starting at position
S, directly controlled by the agent, and a
variable target (see environment box in fig-
ure 2). The task is to press three targets
in consecutive order, which always appear
at the same positions (one at one time),
marked 1, 2 and 3 in the figure. If the hand
of the arm satisfy a proximity condition
(|ξtarget − ξhand| < ξprox and |ξ̇hand| <
vprox) a key (target) is considered pressed,
and the next target appears immediately.
To allow a larger possibility of modifying
the movement, we have a very loose ve-
locity constraint vprox (for all simulations,
ξprox = 0.02 m and vprox = 0.5 m/s ).
Each trial ended after successful comple-
tion of the task, or after 5 s.

For each successful key press, the agent is
rewarded instantaneously, with an increas-
ing amount of reward for later keys in the
sequence (50, 100, 150 respectively). A
small, constant running time cost (10/s)
was subtracted from the reward function
r(t).

3.2 The visual module

The visual module is designed as a com-
puted torque feedback controller for sim-
plicity. It was designed to give an output
as similar as possible to biological reach-
ing movements, but we did not attempt to
design the controller itself in a biologically
plausible way.

The feedback signal yv to the visual mod-
ule consists of the hand kinematics ξhand,
ξ̇hand and the target position ξtarget. Using
a computed torque feedback control law,
the visual module uses these signals to generate a reaching movement, representing the
preknown motor behaviour of the agent. As such a control law does not have mea-
sures to deal with delayed signals, we make the assumption that the control law relies
on ξ̃hand(t) = ξhand(t), i.e. the controller can predict for the delay regarding the arm



movement (the target signal is still delayed by τ v . This is a limitation of our example, but
is a necessity to avoid “motor babbling “, for which learning time would be infinitely long.

The controller output

u̇visual(t) = −
1

τCT
uvisual(t) + λuvisual′(

¨̃
ξ

hand

,
˙̃
ξ

hand

, e)

where τCT and λ are constants, e = ξtarget(t − τv) − ξ̃hand(t) and

uvisual′(t) = JT (M(
¨̃
ξ
hand

+ K1

˙̃
ξ
hand

− K2e) + C
˙̃
ξ
hand

)

where J is the Jacobian (∂θ/∂ξ̃hand), M the moment of inertia matrix and C the Coriolis
matrix. With proper control gains K1 and K2, the filter helps to give bell-shaped velocity
profiles for the reaching movement, desirable for its resemblance to biological motion.

The output uvisual is then expanded to a population vector

av
j (t) =

1

Z
exp(−

1

2
{
∑

d

(
uvisual

d (t) − ūjd

σ′′

jd

)2})

where Z is the normalisation term, ūjd is a preferable joint torque for Cartesian dimension
d for vector element j, σ′′

jd the corresponding variance.

Parameters: τCT = 50 ms, λ = 100, K1 = [10 0;0 10], K2 = [50 0;0 50]. The prefered
joint torques ūj corresponding to action j were distributed symmetrically over the origin
in a 5x5 grid, in the range (-100:100,-100:100) with the middle (0,0) unit removed. The
corresponding variances σ′′

jd were half the distance to the closest node in each direction.

3.3 The motor module

The motor module relies on information about the motor state of the arm. In the vicinity
of a target, by the immediate motor state alone it may be difficult to determine whether
the hand should move towards or away from the target position. We solve this by adding
contextual neurons. These neurons fire after a particular key is pressed.

Thus, the feedback signal ym with k = 1, 2, ..,K is partitioned by K0: The first part
(k ≤ K0) represents the motor state, and the second part (k > K0) represents the context.

The feedback to the motor module are the joint angles and angular velocities θ, θ̇ of the
arm, expanded to a population vector with K0 elements:

ym
k (t) =

1

Z
exp

(

−
1

2

{

∑

d

(
θd(t) − θ̄kd

σkd

)2 +
∑

d

(
θ̇d(t) − ω̄kd

σ′

kd

)2
})

where ¯θkd, ω̄kd are preferable joint angles and velocities, σkd and σ′

kd are corresponding
variances, Z is a normalisation term.

The context units are a number of n = 1, 2, .., N tapped delay lines (where N correspond
to the number of keys in the sequence), where each delay line has Q units. For (k > K0,
k 6= K0 + Q(n − 1) + 1):

ẏm
k (t) = −

1

τC
ym

k (t) + yk−1(t)



Each delay line is initiated by the input at (k = K0 + Q(n − 1) + 1):

ym
k (t) = δ(t − τkeypress

n )

where δ is the Dirac delta function, and τ keypress
n is the instant the nth key was pressed.

The response signal am is the linear combination of ym and the trainable matrix Wm,

am(t) = Wmym(t − τm)

Though it is reasonable to use both feedback pathways for the critic, for simplicity we use
only the motor:

V (t) = Wcym(t − τm)

Parameters: The prefered joint angles θ̄kd and angular velocities ω̄kd were distributed
uniformly in a 7*7*3*3 grid (K0 = 441 nodes) for k = 1, 2, ..K0 nodes , in the ranges
(-0.2:1.2,1,2:1.6) rad and (-1:1,-1:1) rad/s. The corresponding variances σkd and σ′

kd were
half the distance to the closest node in each direction. The contextual part of the vector has
Q = 8, N = 3, which makes 24 elements. The time constant τC = 30 ms.

4 Simulation results

We trained the model for four different feedback delay pairs (τ v / τm, in ms): 100/0,
100/50, 100/100, 0/100 (β = 10, τTD = 200 ms, κ = 200 ms, α = 0.1 s−1). We stopped
the simulations after 125,000 trials. Two properties are essential for our argument: the
shortest feedback delay τmin = min(τv, τm) and the relative latency ∆τ = (τ v − τm).

Figure 3: (Left) Change in performance time (running averages) across trials for different
feedback delays (displayed in ms as visual/motor). (Right) Example hand trajectories for
the initial (gray lines) and learned (black lines) behaviour for the run with 100 ms/0 ms
delay.

4.1 Final performance time depends on the shortest latency

Figure 3 shows that the performance time (PT, the time it takes to complete one trial) was
improved for all four simulations. The final PT relates to the shortest latency τ min, the
shorter the better final performance.



However, there are three possible reasons for speedup: 1) a more deterministic (greedy)
policy π, 2) a change in trajectory and 3) faster reaction by utilization of faster feedback. As
we observed more stereotyped trajectories and more deterministic policies after learning,
reason 1) is true, but does it account for the entire improvement? For the rather exploratory,
visually guided initial movement, the average PT is 1.55 s and 1.25 s for τ v = 100ms and
τv = 0ms respectively, while the corresponding greedy policy PTs are 1.41 s and 1.13 s.
Since the final PTs always were lower, the speedup must also be due to other changes
in behaviour. Figure 3 (right) shows example trajectories of the inital (gray) and learned
(black) policy in 100/0. We see that while the initial movement was directed target-by-
target, the learned displays a smoothly curved movement, optimized to perform the entire
sequence. This is expected, as the discounted reward (determined by τTD) and time cost
favour fast movements over slow. This change was to some degree observed in all four
simulations, although it was most evident (see the next subsection) in the 100/0. So reason
2) also seems to be true. We also see that the shorter τmin, the shorter final PT. Reason 3)
is also significant: the possibility to speed up the movement is limited by τmin.

Figure 4: Performance after learning with typical examples of hand trajectories in a normal
condition, and a condition with the visual module turned off, for agents with different feed-
back delay. Average performance times are displayed for each. When the visual module
was turned off, the agent often failed to complete the sequence in 5 s. Success rate are
shown in parantheses, and the corresponding average are for the successful trials only. The
solid lines highlight the trajectory while execution is stable, while the dashed lines show
the parts when the agent is out of control.

4.2 The module with shorter latency is more influential over motor control

Figure 4 shows the performance of sufficiently learned behaviour (after 125,000 trials)
for two conditions: one normal (“condition 1”) and one with the visual module turned off
(“condition 2”). Condition 1 is shown mainly for reference. The difference in trajectories in
condition 1 are marginal, but execution tends to destabilize with longer τ min. Condition 2
reveals the dependence of the visual module. In the 100/0 case, the correct spatial trajectory
is generated each time, but a sometimes too fast movement leads to overshoots for 2nd and
3rd keys. For smaller ∆τ (rightwards in figure 4) the execution becomes unstable, and the
0/100 case it could never execute the movement. For some reason, when the 100/100 kept
the hand on track, it was less likely to do overshoots than the 100/50 case, which is why
the average PT and success rate is better.

Thus, we conclude that the faster module are more influential over motor control. The
adaptiveness of the motor loop also offer the motor module an advantage over the visual.



5 Conclusion

Our framework offers a natural way to combine modules with different feedback latencies.
In any particular situation, the learning algorithm will reinforce the better module to use.
When execution is fast, the module with shorter latency may be favourable, and when slow,
the one with more information. For example, in vicinity of the experienced sequence, our
agent utilized the somatosensory feedback to execute the movement more quickly, but once
it lost control the visual feedback was needed to put the arm back on track again.

By using the softmax function it is possible to flexibly gate or combine module outputs.
Sometimes the asynchrony of modules can cause the visual and motor modules to be di-
rected towards different targets. Then it is desirable to suppress the slower module to favour
the faster, which also occured in our example by reinforcing the motor module enough to
suppress the visual. In other situations the reliability of one module may be insufficient for
robust execution, making it necessary to combine modules.

In our 100/0 example, the slower visual module was used to assist the faster motor module
to learn a skill. Once acquired, the visual module was not necessary for the skillful execu-
tion anymore, unless something went wrong. Thus, the visual module is more free to attend
to other tasks. When we learn to ride a bicycle, for example, we first need to attend to what
we do, but once we have learned, we can attend to other things, like the surrounding traffic
or a conversation. Our result suggests that a longer relative latency helps to make the faster
modality independent, so the slower can be decoupled from execution after learning.

In the human brain, forward models are likely to have access to an efference copy of the
motor command, which may be more important than the incoming feedback for fast move-
ments [1]. This is something we intend to look at in future work. Also, we will extend this
work with a more theoretical analysis, and compare the performance of multiple adaptive
modules.
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