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Abstract

In this paper, we explore the use of Random Forests (RFs) in the struc-
tured language model (SLM), which uses rich syntactic information in
predicting the next word based on words already seen. The goal in this
work is to construct RFs by randomly growing Decision Trees (DTSs) us-
ing syntactic information and investigate the performance of the SLM
modeled by the RFs in automatic speech recognition.

RFs, which were originally developed as classifiers, are a combination
of decision tree classifiers. Each tree is grown based on random training
data sampled independently and with the same distribution for all trees in
the forest, and a random selection of possible questions at each node of
the decision tree. Our approach extends the original idea of RFs to deal
with the data sparseness problem encountered in language modeling.
RFs have been studied in the context of n-gram language modeling and
have been shown to generalize well to unseen data. We show in this paper
that RFs using syntactic information can also achieve better performance
in both perplexity (PPL) and word error rate (WER) in a large vocabulary
speech recognition system, compared to a baseline that uses Kneser-Ney
smoaothing.

1 Introduction

In many systems dealing with speech or natural language, such as Automatic Speech
Recognition and Statistical Machine Translation, a language model is a crucial component
for searching in the often prohibitively large hypothesis space. Most state-of-the-art sys-
tems use n-gram language models, which are simple and effective most of the time. Many
smoothing techniques that improve language model probability estimation have been pro-
posed and studied in the n-gram literature [1]. There has so far been work in exploring
Decision Tree (DT) language models [2, 3], which attempt to cluster similar histories to-
gether to achieve better probability estimation. However, the results were negative [3]:
decision tree language models failed to improve upon the baseline n-gram models with the
same order n.

Random Forest (RF) language models, which are generalizations of DT language models,
have been recently applied to word n-grams [4]. DT growing is randomized to construct



RFs efficiently. Once constructed, the RFs function as a randomized history clustering,
which helps in dealing with the data sparseness problem. In general, the weakness of some
trees can be compensated for by other trees. The collective contribution of all DTs in an
RF n-gram model results in significant improvements in both perplexity (PPL) and word
error rate (WER) in a large vocabulary speech recognition system.

Language models can also be improved with better representations of the history. Recent
efforts have studied various ways of using information from a longer history span than that
usually captured by normal n-gram language models, as well as ways of using syntactic
information that is not available to the word-based n-gram models [5, 6, 7]. All these lan-
guage models are based on stochastic parsing techniques that build up parse trees for the
input word sequence and condition the generation of words on syntactic and lexical infor-
mation available in the parse trees. Since these language models capture useful hierarchical
characteristics of language, they can improve PPL and WER significantly for various tasks.
However, due to the n-gram nature of the components of the syntactic language models,
the data sparseness problem can be severe.

In order to reduce the data sparseness problem for using rich syntactic information in the
context, we study the use of RFs in the structured language model (SLM) [5]. Our results
show that although the components of the SLM have high order n-grams, our RF approach
can still achieve better performance, reducing both the perplexity (PPL) and word error
rate (WER) in a large vocabulary speech recognition system compared to a Kneser-Ney
smoothing baseline.

2 Basic Language Modeling

The purpose of a language model is to estimate the probability of a word string. Let W
denote a string of N words, that is, W = wi,ws,...,wy. Then, by the chain rule of
probability, we have

PW)=P(w1)x[T X, P(w;|wi,....wi_1). 1)
In order to estimate the probabilities P(w;|w1,...,w;—1), we need a training corpus con-
sisting of a large number of words. However, in any practical natural language system of
even moderate vocabulary size, it is clear that the number of probabilities to be estimated
and stored is prohibitively large. Therefore, histories wy, . .., w;_; for a word w; are usu-
ally grouped into equivalence classes. The most widely used language models, n-gram
language models, use the identities of the last n — 1 words as equivalence classes. In an
n-gram model, we then have

P(W)=P(w1)xI[{L, Pwilw;Z, 1), 2

where we have used w;_ ), ; to denote the word sequence w;_ 41, . .., w;_1.

If we could handle unlimited amounts of training data, the maximum likelihood (ML)
estimate of P(w;|w!”} , ;) would be the best:

i Cwi_pny1)
P(w,;huii}”rl):ﬁ, (3)
where C(w!_,, ) is the number of times the string w; 1, . .., w; is seen in the training

data.

2.1 Language M odel Smoothing

An n-gram model when n = 3 is called a trigram model. For a vocabulary of size |V | =
10%, there are |V|? = 10*2 trigram probabilities to be estimated. For any training data of a
manageable size, many of the probabilities will be zero if the ML estimate is used.



In order to solve this problem, many smoothing techniques have been studied (see [1]
and the references therein). Smoothing adjusts the ML estimates to produce more accurate
probabilities and to assign nonzero probabilities to any word string. Details about various
smoothing techniques will not be presented in this paper, but we will outline a particular
way of smoothing, namely interpolated Kneser-Ney smoothing [8], for later reference.

Interpolated Kneser-Ney smoothing assumes the following form:

nlaz(C('w;LiTrFl)fD,O)
i1
C(111£7n+1) (4)
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where D is a discounting constant and A(w;_. . ;) is the interpolation weight for the lower
order probabilities ((n — 1)-gram). The discount constant is often estimated using the
leave-one-out method, leading to the approximation D = —™.— where n; is the number

ni+2n2’

of n-grams with count one and ns is the number of n-grams with count two. To ensure that
the probabilities sum to one, we have
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The lower order probabilities in interpolated Kneser-Ney smoothing can be estimated as
(assuming ML estimation):

i 1
Zwi_n+1:0(w;_n+l>>o (5)
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Note that the lower order probabilities are usually recursively smoothed using Equation 4.

2.2 Language Model Evalution

A commonly used task-independent quality measure for a given language model is related
to the cross-entropy of the underlying model and is referred to as perplexity (PPL):

PPL=exp(—1/N ¥ X, log [P(w;|wi™"))), (6)
where w1, ..., wy is the test text that consists of NV words.

For different tasks, there are different task-dependent quality measures of language mod-
els. For example, in an automatic speech recognition system, the performance is usually
measured by word error rate (WER).

3 The Structured Language Model (SLM)

The SLM uses rich syntactic information beyond regular word n-grams to improve lan-
guage model quality. An extensive presentation of the SLM can be found in Chelba and
Jelinek, 2000 [5]. The model assigns a probability P(W,T') to every sentence W and ev-
ery possible binary parse T'. The terminals of 7" are the words of W with POS tags, and
the nodes of T" are annotated with phrase headwords and non-terminal labels. Let W be

h_{-m} = (<>, SB) h}»l} h_0= (h O.word, h_0.tag)

(<>, SB) ... (w_p, t_p) W_{p+1}, t {p+1}) ........ (W_k, t_ K)w_{k+1}.... </s>

Figure 1: A word-parse k-prefix



a sentence of length n words to which we have prepended the sentence beginning marker
<s> and appended the sentence end marker </ s> so that wy =<s> and wy+; =</ $>.
Let Wi = wy . . . wy, be the word k-prefix of the sentence — the words from the beginning
of the sentence up to the current position k — and W}, T}, the word-parse k-prefix. Figure 1
shows a word-parse k-prefix; h_0, .., h_{-n} arethe exposed heads, each head be-
ing a pair (headword, non-terminal label), or (word, POS tag) in the case of a root-only
tree. The exposed heads at a given position & in the input sentence are a function of the
word-parse k-prefix [5].

The joint probability P(W, T') of a word sequence W and a complete parse 7" comes from
contributions of three components: WORD-PREDICTOR, TAGGER and CONSTRUC-
TOR. The SLM works in the following way: first, the WORD-PREDICTOR predicts a
word based on the word-parse prefix; the TAGGER then assigns a POS tag to the predicted
word based on the word itself and the word-parse prefix; the CONSTRUCTOR takes a
series of actions each of which turns a parse prefix into a new parse prefix (the series of
actions ends with a NULL action which tells the WORD-PREDICTOR to predict the next
word). Details about the three components can be found in [5]. Each of the three compo-
nents can be seen as an n-gram model and can be estimated independently because of the
product form of the joint probability. They are parameterized (approximated) as follows:

P(wi|Wi-1Tk—-1) = P(wglho.tag,ho.word,h_1.tag,h_1.word), (7)
P(tg|we,Wig—1Tr—1) = P(tx|wk,ho.tag,h_1.tag), (8)
P(pf|Wk_1Tk,_1,wk,tk,p’f...pf’fl) = P(pf\hg‘tag,h,l.tag,h,z.tag,ho.word,h,l‘word), (9)

where pk is the i'" CONSTRUCTOR action after the k‘" word and POS tag have been
predicted. Since the number of parses for a given word prefix Wj grows exponentially
with k, [{T}}| ~ O(2F), the state space of our model is huge even for relatively short
sentences. Thus we must use a search strategy that prunes the allowable parse set. One
choice is a synchronous multi-stack search algorithm [5] which is very similar to a beam
search.

The language model probability assignment for the word at position k& + 1 in the input
sentence is made using:

Psim(wit1lWi) = X es, PWet1lWiTk)-p(Wi,Tk),
p(WiTk) = P(WiTk)/ ¥ gy cs, P(WTk), (10)
which ensures a proper probability normalization over strings of words, where Sy, is the set

of all parses present in the stacks at the current stage k£ and P(WT},) is the joint probability
of word-parse prefix W, Tk.

Each model component —WORD-PREDICTOR, TAGGER, CONSTRUCTOR— is esti-
mated independently from a set of parsed sentences after undergoing headword percolation
and binarization (see details in [5]).

4 Using Random Forestsin the Structured Language M odel

4.1 Random Forest n-gram Modeling

A Random Forest (RF) n-gram model is a collection of randomly constructed decision tree
(DT) n-gram models. Unlike RFs in classification and regression tasks [9, 10, 11], RFs
are used in language modeling to deal with the data sparsenes problem [4]. Therefore, the
training data is not randomly sampled for each DT. Figure 2 shows the algorithm DT-Grow
and Node-Split used for generating random DT language models.

We define a position in the history as the distance between a word in the history and the
predicted word. The randomization is carried out in two places: a random selection of



Algorithm DT-Grow Algori ;
i - gorithm Node-Split(p)
Input: counts for training and heldout data Input: node p and training data associated

Create a root node containing all o
Initialize: histories in the training data and Initialize:
putitinset ®

Randomly select a subset of posi-
tions I in the history

. . Foreach position 7 in I
While @ is not empty P ’

1. Geta node p from @ 1. Group all histories into basic elements
2. 1f Node-Split(p) is successful, elim- B(v)
inate p fr(_)m ® and put the two chil- 2. Randomly split the elements B(v)
dren of p in & into sets £ and R
Foreach internal node p in the tree 3. Whilethere are elements moved, Do

1. L« normalized likelihood of held-
out data associated with p, using

. o (@) Move each element from L to
training data statistics in p

R if the move results in positive

2. Get the set of leaves P rooted in p gain in training data likelihood

3. Lg «— normalized likelihood of held- (b) Move each element from R to
out data associated with all leaves in £ if the move results in positive
‘P, using training data statistics in the gain in training data likelihood

corresponding leaves

4. if Ly — Ly < 0, prune the subtree  gelect the position from I that results in the
rooted in p largest gain
Output: a Decistion Tree language model Output: asplit £ and R, or failure if the largest
gain is not positive

Figure 2: The algorithm DT-Grow and Node-Split

positions in the history and an initial random split of basic elements. Since our splitting
criterion is to maximize the log-likelihood of the training data, each split uses only statistics
(from training data) associated with the node under consideration. Smoothing is not needed
in the splitting and we can use a fast exchange algorithm [12] in Node-Split. Given a
position 4 in the history, 3(v) is defined to be the set of histories belonging to the node p,
such that they all have word v at position 4. It is clear that for every position 7 in the history,
the union U, G(v) is all histories in the node p.

In DT-Grow, after a DT is fully grown, we use some heldout data to prune it. Pruning is
done in such a way that we maximize the likelihood of the heldout data, where smoothing
is applied according to Equation 4:

. maz(C(w; @ pr(w! =L )-D,0)
PDT(wil@DT(wl%filﬂ»l)) = Y
C@prwi_g 1) (11)

+>‘(<DDT(WE:711+1))PKN(wi‘wj;lwrz)

where @ pr(-) is one of the DT nodes the history can be mapped to and P y (w;|w!”}, . )
is as defined in Equation 5. This pruning is similar to the pruning strategy used in
CART [13].

Once we get the DTs, we only use the leaf nodes as equivalence classes of histories. If
a new history is encountered, it is very likely that we will not be able to place it at a leaf
node in the DT. In this case, A(@DT(w;:}LH)) = 1 in Equation 11 and we simply use

Py (wilwiZ} ) to get the probabilities.

The randomized version of the DT growing algorithm can be run many times and finally

we will get a collection of randomly grown DTs: a Random Forest (RF). Since each DT is
a smoothed language model, we simply aggregate all DTs in our RF to get the RF language



model. Suppose we have M randomly grown DTs, DT4, ..., DTy;. In the n-gram case,
the RF language model probabilities can be computed as:

Pre(wilw;~ 7 1 )=73r X }L; Por; (wil®pr; (wi~5 1)) (12)
where ® 7, (w”} ;) maps the history w!” . , to a leaf node in DTj. If w!~} | can not

be mapped to a leaf node in some DT, we back-off to the lower order KN probability as
mentioned earlier.

It can be shown by the Law of Large Numbers that the probability in Equation 12 converges
as the number of DTs grows. It converges to Er [PT(wq;\@T(wfj}Hl)] where 7 is a
random variable representing the random DTs. The advantage of the RF approach over the
KN smoothing lies in the fact that different DTs have different weaknesses and strengths
for word prediction. As the number of trees grows, the weakness of some trees can be
compensated for by some other trees. This advantage and the convergence have been shown

experimentally in [4].

4.2 UsingRFsintheSLM

Since the three model components in the SLM as in Equation 7-9 can be estimated inde-
pendently, we can construct an RF for each component using the algorithm DT-Grow in
the previous section. The only difference is that we will have different n-gram orders and
different items in the history for each model.

Ideally, we would like to use RFs for each component in the SLM. However, due to the
nature of the SLM, there are difficulties. The SLM uses a synchronous multi-stack search
algorithm to dynamically construct stacks and compute the language model probabilities
as in Equation 10. If we use RFs for all components, we need to load all DTs in the RFs
into memory at runtime. This is impractical for RFs of any reasonable size.

There is a different approach that can take advantage of the randomness in the RFs. Sup-
pose we have M randomly grown DTs, DT, ..., DTy, for each component a of the SLM,
where @ € {P, T, C'} for WORD-PREDICTOR, TAGGER and CONSTRUCTOR, respec-
tively. The DTs are grouped into M triples {DT, DT, DTF} j = 1,...,M. We
calculate the joint probability P(W,T)) for the 5" DT triple according to:

Py(W,T)= [l [P

P (Wi|Wi—1Tk—1)-P,
J

T (k[ Wi—1Tk—1,wk )
J

1% Ppro (05 IWe_1 T 1w te,p}..p5_ )] (13)
J
Then, the language model probability assignment for the j¢* DT triple is made using:
PjlwptlWe) = ¥ 5 _gi P (Wi 1 [WiTE)-p; (W, T),
k k J

pi (Wi, T) = Pj(Wlez)/ZTgesi Pj(WiT}), (14)
which is achieved by running the synchronous multi-stack algorithm using the j** DT triple
as a model. Finally, after the SLM is run M times, the RF language model probability is
an average of the probabilities above:

Prr (w1 |[Wi)=37 ¥ 1L, Pj(wis1|We). (15)

The triple {DTjP, DTJT, DTJC} can be considered as a single DT in which the root node

has three children corresponding to the three root nodes of DTjP , DTjT and DTjC . The
root node of this DT asks the question: Which model component does the history belong
to? According to the answer, we can proceed to one of the three children nodes (one of the
three components, in fact). Since the multi-stack search algorithm is deterministic given
the DT, the probability in Equation 15 can be shown to converge.



5 Experiments

5.1 Perplexity (PPL)

We have used the UPenn Treebank portion of the WSJ corpus to carry out our experiments.
The UPenn Treebank contains 24 sections of hand-parsed sentences, for a total of about
one million words. We used section 00-20 for training our models, section 21-22 as heldout
data for pruning the DTs, and section 23-24 to test our models. Before carrying out our
experiments, we normalized the text in the following ways: numbers in arabic form were
replaced by a single token “N”, punctuation was removed, all words were mapped to lower
case, extra information in the parse trees was ignored, and, finally, traces were ignored. The
word vocabulary contains 10k words including a special token for unknown words. There
are 40 items in the part-of-speech set and 54 items in the non-terminal set, respectively.

The three components in the SLM were treated independently during training. We trained
an RF for each component and each RF contained 100 randomly grown DTs. The baseline
SLM used KN smoothing (KN-SLM). The 100 probability sequences from the 100 triples
were aggregated to get the final PPL. The results are shown in Table 1. We also interpolated
the SLM with the KN-trigram to get further improvements. The interpolation weight « in
Table 1 is on KN-trigram. The RF-SLM achieved a 10.9% and a 7.5% improvement over
the KN-SLM, before and after interpolation with KN-trigram, respectively. Compared to
the improvements reported in [4] (10.5% from RF-trigram to KN-trigram), the RF-SLM
achieved greater improvement by using syntactic information. Figure 3 shows the conver-
gence of the PPL as the number of DTs grows from 1 to 100.

i:: Model a=0.0 | =04 | =1.0

KN-SLM | 1379 | 127.2 | 1450

Zuo RF-SLM | 122.8 | 117.6 | 145.0

Gain 10.9% | 7.5% -

- Table 1: PPL comparison between KN-

: e SLM and RF-SLM, interpolated with
Number of DTs KN-tI’Igram

Figure 3: PPL convergence
5.2 Word Error Rateby N-best Re-scoring

To test our RF modeling approach in the context of speech recognition, we evaluated the
models in the WSJ DARPA’93 HUBL test setup. The size of the test set is 213 utterances,
3446 words. The 20k word open vocabulary and baseline 3-gram model are the standard
ones provided by NIST and LDC — see [5] for details. The N-best lists were generated
using the standard 3-gram model trained on 40M words of WSJ. The N-best size was at
most 50 for each utterance, and the average size was about 23. For the KN-SLM and RF-
SLM, we used 20M words automatically parsed, binarized and enriched with headwords
and NT/POS tag information. As the size of RF-SLM becomes very large, we only used
RF for the WORD-PREDICTOR component (RF-SLM-P). The other two components used
KN smoothing. The results are reported in Table 2.

Model a=0.0 | a=0.2 | =04 | a=0.6 | «=0.8
KN-SLM 12.8 125 12.6 12.7 12.7
RF-SLM-P | 11.9 12.2 12.3 12.3 12.6

Table 2: N-best rescoring WER results

For purpose of comparison, we interpolated all models with the KN-trigram built from



40M words at different level of interpolation weights o (on KN-trigram). However, it is the
a = 0.0 column that is the most interesting. We can see that the RF approach improved
over the regular KN approach with an absolute WER reduction of 0.9%.

6 Conclusions

Based on the idea of Random Forests in classification and regression, we developed algo-
rithms for constructing and using Random Forests in language modeling. In particular, we
applied this new probability estimation technique to the Structured Language Model, in
which there are three model components that can be estimated independently. The inde-
pendently constructed Random Forests can be considered as a more general single Random
Forest, which ensures the convergence of the probabilities as the number of Decision Trees
grows. The results on a large vocabulary speech recognition system show that we can
achieve significant reduction in both perplexity and word error rate, compared to a baseline
using Kneser-Ney smoothing.
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