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Abstract

In this paper we propose to combine two powerful ideas, boosting and
manifold learning. On the one hand, we improve ADABOOST by incor-
porating knowledge on the structure of the data into base classifier design
and selection. On the other hand, we use ADABOOST’s efficient learn-
ing mechanism to significantly improve supervised and semi-supervised
algorithms proposed in the context of manifold learning. Beside the spe-
cific manifold-based penalization, the resulting algorithm also accommo-
dates the boosting of a large family of regularized learning algorithms.

1 Introduction

ADABOOST [1] is one of the machine learning algorithms that have revolutionized pattern
recognition technology in the last decade. The algorithm constructs a weighted linear com-
bination of simple base classifiers in an iterative fashion. One of the remarkable properties
of ADABOOST is that it is relatively immune to overfitting even after the training error has
been driven to zero. However, it is now a common knowledge that ADABOOST can overfit
if itis run long enough. The phenomenon is particularly pronounced on noisy data, so most
of the effort to regularize ADABOOST has been devoted to make it tolerant to outliers by
either “softening” the exponential cost function (e.g., [2]) or by explicitly detecting outliers
and limiting their influence on the final classifier [3].

In this paper we propose a different approach based on complexity regularization. Rather
than focusing on possibly noisy data points, we attempt to achieve regularization by fa-
voring base classifiers that are smooth in a certain sense. The situation that motivated
the algorithm is not when the data is noisy, rather when it has a certain structure that is
ignored by ordinary ADABOOST. Consider, for example, the case when the data set is em-
bedded in a high-dimensional space but concentrated around a low dimensional manifold
(Figure 1(a)). ApDABoOOST will compare base classifiers based on solely their weighted
errors so, implicitly, it will consider every base classifier having the same (usually low)
complexity. On the other hand, intuitively, we may hope to achieve better generalization if
we prefer base classifiers that “cut through” sparse regions to base classifiers that cut into
“natural” clusters or cut the manifold several times. To formalize this intuition, we use the
graph Laplacian regularizer proposed in connection to manifold learning [4] and spectral
clustering [5] (Section 3). For binary base classifiers, this penalty is proportional to the
number of edges of the neighborhood graph that the classifier cuts (Figure 1(b)).



Figure 1: (a) Given the data, the vertical stump has a lower “effective” complexity than
the horizontal stump. (b) The graph Laplacian penalty is proportional to the number of
separated neighbors.

To incorporate this adaptive penalization of base classifiers into ADABoOST, we will turn
to the marginal ADABOOST algorithm [6] also known as arc-gv [7]. This algorithm can
be interpreted as ADABOOST with an L, weight decay on the base classifier coefficients
with a weight decay coefficient #. The algorithm has been used to maximize the hard
margin on the data [7, 6] and also for regularization [3]. The coefficient ¢ is adaptive
in all these applications: in [7] and [6] it depends on the hard margin and the weighted
error, respectively, whereas in [3] it is different for every training point and it quantifies the
“noisiness” of the points. The idea of this paper is to make 6 dependent on the individual
base classifiers, in particular, to set 6 to the regularization penalty of the base classifier.
First, with this choice, the objective of base learning becomes standard regularized error
minimization so the proposed algorithm accommodates the boosting of a large family of
regularized learning algorithms. Second, the coefficients of the base classifiers are lowered
proportionally with their complexity, which can be interpreted as an adaptive weight decay.
The formulation can be also justified by theoretical arguments which are sketched after the
formal description of the algorithm in Section 2.

Experimental results (Section 4) show that the regularized algorithm can improve general-
ization. Even when the improvement is not significant, the difference between the training
error and the test error decreases significantly and the final classifier is much sparser than
ADABOOST’s solution, both of which indicate reduced overfitting. Since the Laplacian
penalty can be computed without knowing the labels, the algorithm can also be used for
semi-supervised learning. Experiments in this context show that algorithm besignificantly
the semi-supervised algorithm proposed in [4].

2 TheREGBoOOST algorithm

For the formal description, let the training data be D,, = ((xl,yl), ce (xn,yn)) where
data points (x;, ;) are from the set R x {—1, 1}. The algorithm maintains a weight distri-
bution w(t) = (wit), e w,(f)) over the data points. The weights are initialized uniformly
in line 1 (Figure 2), and are updated in each iteration in line 10. We suppose that we are
given a base learner algorithm BASE(D,,, w, P(-)) that, in each iteration ¢, returns a base

classifier h(*) coming from a subset of H = {h : R?— {-1,1}}. In ADABOOST, the
goal of the base classifier is to minimize the weighted error

e=e?(h) = ngt)f {h(xi) # yi} , 72
=1

The indicator function T{A} is 1 if its argument A is true and 0 otherwise.
2\We will omit the iteration index ) and the argument () where it does not cause confusion.
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Figure 2: The pseudocode of the REGBOOST algorithm with binary base classifiers. D,,
is the training data, BASE is the base learner, P is the penalty functional, ) is the penalty
coefficient, and 7" is the number of iterations.

n

which is equivalent to maximizing theedge vy = 1 —2e = > " | wﬁt)h(xi)yi. The goal of
REGBOOST’s base learner is to minimize the penalized cost

Ri(h) = (h) + AP(R) = 3 — (1~ 6), @
where P : ‘H — R is an arbitrary penalty functional or regularization operator, provided
to REGBOOST and to the base learner, X is the penalty coefficient, and 6 = 2AP(h) is the
edge offset. Intuitively, the edge ~ quantifies by how much A is better than a random guess,
while the edge offset ¢ indicates by how much ~(*) must be better than a random guess.
This means that for complex base classifiers (with large penalties), we require a better
base classification than for simple classifiers. The main advantage of R; is that it has the
form of conventional regularized error minimization, so it accommodates the boosting of
all learning algorithms that minimize an error functional of this form (e.g., neural networks
with weight decay). However, the minimization of R; is suboptimal from boosting’s point
of view.3 If computationally possible, the base learner should minimize

1— e\ 10 . 1—-6 14 40 g _ 1-6
Ro(h) =24/ [ ~—< S - 1 @
1446 1-0 1446 1-0
3This statement along with the formulae for Ry, R, and a‘*) are explained formally after Theo-
rem 1.




After computing the edge and the edge offset in lines 4 and 5, the algorithm sets the coef-
ficient a(*) of the base classifier h(*) to

1. (1440 1. (1460
) — = i (T
@ 21n<1—'y(t) 2ln T ) 3)

In line 11, the algorithm returns the weighted average of the base classifiers f(7) () =
ST a®hd(.) as the combined classifier and uses the sign of f(7)(x) to classify x.
The algorithm must terminate if o(*) < 0 which is equivalent to v(*) < () and to e(*) >
(1—6) /2.4 Inthis case, the algorithm returns the actual combined classifier in line 8. This
means that either the capacity of the set of base classifiers is too small (v(*) is small), or the
penalty is too high (6 is high), so we cannot find a new base classifier that would improve
the combined classifier. Note that the algorithm is formally equivalent to ADABOOST if
6 = 0 and to marginal ADABOOST if §() = ¢ is constant.

For the analysis of the algorithm, we first define the unnormalized margin achieved by f(™)
on (x;,y;) as
pi = 17 (xi)ui,

and the (normalized) margin as

~ Pi Z?:l a " (x;)y;

pPi = =

lexllx Yo al?

where ||a|; = E;‘F:l o) is the L; norm of the coefficient vector. Let the average penalty
or margin offset be defined as the average edge offset

T
XL, a9

: (4)

0= (5)
Zt pa®
The following theorem upper bounds the margmal training error
LO(f™) = Zf{pz <0} (6)

achieved by the combined classifier f(*) that REGBOOST outputs.

Theorem 1 Let 6®) = 2AP(h(®), let § and L® (£(1)) be as defined in (5) and (6), re-
spectively. Let wl( ) be the weight of training point (x;, y;) after the ¢th iteration (updated

in line 10 in Figure 2), and let o*) be the weight of the base regressor A(*)(-) (computed in
line 6 in Figure 2). Then

L© (f) Sﬁ “’a“)iwgt)e—a“m“) HE(t ( (t) h(t)> 7)
=1

Proof. The proof is an extension of the proof of Theorem 5in [8].
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“Strictly speaking, a® = 0 could be allowed but in this case the o) would remain 0 forever so
it makes no sense to continue.



In (8) we used the definitions (6) and (4), the inequality (9) holds since e* > I{z > 0},
and we obtained (10) by recursively applying line 10 in Figure 2. The theorem follows by

the definition (5) and since 3", w!" Y = 1. O

First note that Theorem 1 explains the base objectives (1) and (2) and the base coefficient
(3). The goal of REGBOOST is the greedy minimization of the exponential bound in (7),
that is, in each iteration we attempt to minimize E®) (a, h). Given h), E® (a, V) is
minimized by (3), and with this choice for o), Ry(h) = E® (a(®), 1), so the base learner
should attempt to minimize Ry (h). If this is computationally impossible, we follow Mason
et al.’s functional gradient descent approach [2], that is, we find (Y} by maximizing the

. . (t) . . (t) . . .
negative gradient —W in o = 0. Since —W 0T 6, this criterion is

equivalent to the minimization of R, (h).>

Theorem 1 also suggests various interpretations of REGBOOST which indicate why it
would indeed achieve regularization. First, by (9) it can be seen that REGBOOST directly
minimizes

1 — _
- ZeXP (—pi + 9||OéHl) ,
i=1

which can be interpreted as an exponential cost on the unnormalized margin with an L,
weight decay. The weight decay coefficient 6 is proportional to the average complexity
of the base classifiers. Second, Theorem 1 also indicates that REGBOOST indirectly min-
imizes the marginal error L) (#(T)) (6) where the margin parameter 4, again, is moving
adaptively with the average complexity of the base classifiers. This explanation is sup-
ported by theoretical results that bound the generalization error in terms of the marginal
error (e.g., Theorem 2 in [8]). The third explanation is based on results that show that the
difference between the marginal error and the generalization error can be upper bounded in
terms of the complexity of the base classifier class H (e.g., Theorem 4 in [9]). By imposing
a non-zero penalty on the base classifiers, we can reduce the pool of admissible functions
to those of which the edge ~ is larger than the edge offset §. Although the theoretical
results do not apply directly, they support the empirical evidence (Section 4) that indicate
that the reduction of the pool of admissible base classifiers and the sparsity of the combined
classifier play an important role in decreasing the generalization error.

Finally note that the algorithm can be easily extended to real-valued base classifiers along
the lines of [10] and to regression by using the algorithm proposed in [11]. If base clas-
sifiers come from the set {h : R — R}, we can only use the base objective R, (k) (1),
and the analytical solution (3) for the base coefficients a(*) must be replaced by a simple
numerical minimization (line search) of E® (a, h(Y)).® In the case of regression, the bi-
nary cost function I {h(x) # y} should be replaced by an appropriate regression cost (e.g.,
quadratic), and the final regressor should be the weighted median of the base regressors
instead of their weighted average.

3 Thegraph Laplacian regularizer

The algorithm can be used with any regularized base learner that optimizes a penalized
cost of the form (1). In this paper we apply a smoothness functional based on the graph

®Note that if 8 is constant (ADABOOST or marginal ADABOOST), the minimization of R, (h) and
R3(h) leads to the same solution, namely, to the base classifier that minimizes the weighted error e.
This is no more the case if  depends on h.

®As a side remark, note that applying a non-zero (even constant) penalty & would provide an
alternative solution to the singularity problem (a¥) = co) in the abstaining base classifier model of
[10].



Laplacian operator, proposed in a similar context by [4]. The advantage of this penalty is
that it is relatively simple to compute for enumerable base classifiers (e.g., decision stumps
or decision trees) and that it suits applications where the data exhibits a low dimensional
manifold structure.

Formally, let G = (V, £) be the neighborhood graph of the training set where the vertex
setV = {x1,...,x,} is identical to the set of observations, and the edge set £ contains
pairs of “neighboring” vertices (x;, x;) such that either ||x; — x;|| < = or x; (x;) is among
the % nearest neighbors of x; (x;) where r or k is fixed. This graph plays a crucial role
in several recently developed dimensionality reduction methods since it approximates the
natural topology of the data if it is confined to a low-dimensional smooth manifold in the
embedding space. To penalize base classifiers that cut through dense regions, we use the
smoothness functional

Pe(h) = gy 0 D (1) = ki)W

i=1 j=i+1

where W is the adjacency matrix of G, that is, W;; = I{(x;,x;) € £}, and 2|W| =
2371, >°7_ Wij is a normalizing factor so that 0 < P.(h) < 1.” For binary base
classifiers, P, (h) is proportional to the number of separated neighbors, that is, the number
of connected pairs that are classified differently by h. Let the diagonal matrix D defined
by D;; = Z;;l W;;, and let L = D — W be the graph Laplacian of G. Then it is easy to
see that

2|W|Pz(h) = hLh" = (h,Lh) = Xi(h,e;),
j=1

whereh = (h(xl), ce h(xn)), and e; and \; are the (normalized) eigenvectors and eigen-
values of L, that is, Le; = \;e;, ||e;]| = 1. Since L is positive definite, all the eigenvalues
are non-negative. The eigenvectors with the smallest eigenvalues can be considered as the
“smoothest” functions on the neighborhood graph. Based on this observation, [4] proposed
to learn a linear combination of a small number of the eigenvectors with the smallest eigen-
values. One problem of this approach is that the out-of-sample extension of the obtained
classifier is non-trivial since the base functions are only known at the data points that par-
ticipated in forming the neighborhood graph, so it can only be used in a semi-supervised
settings (when unlabeled test points are known before the learning). Our approach is based
on the same intuition, but instead of looking for a linear combination of the eigenvectors,
we form a linear combination of known base functions and penalize them according to their
smoothness on the underlying manifold. So, beside semi-supervised learning (explored in
Section 4), our algorithm can also be used to classify out-of-sample test observations.

The penalty functional can also be justified from the point of view of spectral clustering
[5]. The eigenvectors of L with the smallest eigenvalues® represent “natural” clusters in
the data set, so P, (h) is small if & is aligned with these eigenvectors, and P, (h) is large if
h splits the corresponding clusters.

" Another variant (that we did not explore in this paper) is to weight edges decreasingly with their
lengths.

8starting from the second smallest; the smallest is 0 and it corresponds to the constant func-
tion. Also note that spectral clustering usually uses the eigenvectors of the normalized Laplacian
L = D'2LD~'/2. Nevertheless, if the neighborhood graph is constructed by connecting a fixed
number of nearest neighbors, D,; is approximately constant, so the eigenvectors of L and L are
approximately equal.



4 Experiments

In this section we present experimental results on four UCI benchmark datasets. The re-
sults are preliminary in the sense that we only validated the penalty coefficient A, and did
not optimize the number of neighbors (set to &£ = 8) and the weighting scheme of the edges
of the neighborhood graph (W;; = 0 or 1). We used decision stumps as base classifiers,
10-fold cross validation for estimating errors, and 5-fold cross validation for determining .
The results (Figure 3(a)-(d) and Table 1) show that the REGBOOST consistently improves
generalization. Although the improvement is within the standard deviation, the difference
between the test and the training error decreases significantly in two of the four experi-
ments, which indicates reduced overfitting. The final classifier is also significantly sparser
after 1000 iterations (last two columns of Table 1). To measure how the penalty affects the
base classifier pool, in each iteration we calculated the number of admissible base classi-
fiers relative to the total number of stumps considered by ADABOOST. Figure 3(e) shows
that, as expected, REGBOOST traverses only a (sometimes quite small) subset of the base
classifier space.

100

]
Figure 3: Learning curves. Test and training errors for the (a) ionosphere, (b) breast
cancer, (c) sonar, and (d) Pima Indians diabetes data sets. (e) Rate of admissible stumps.
(f) Test and training errors for the ionosphere data set with 100 labeled and 251 unlabeled
data points.

data set training error test error # of stumps
ADAB | REGB | ADAB REGB ADAB | REGB
ionosphere 0% 0% 9.14% (7.1) | 7.7% (6.0) 182 114
breast cancer | 0% 2.44% | 5.29% (3.5) | 3.82% (3.7) | 58 30
sonar 0% 0% 32.5% (19.8) | 29.8% (18.8) | 234 199
Pima Indians | 10.9% | 16.0% | 25.3% (5.3) | 23.3% (6.8) | 175 91

Table 1: Errors rates and number of base classifiers after 1000 iterations.

Since the Laplacian penalty can be computed without knowing the labels, the algorithm
can also be used for semi-supervised learning. Figure 3(f) shows the results when only a
subset of the training points are labeled. In this case, REGBOOST can use the combined
data set to calculate the penalty, whereas both algorithms can use only the labeled points



to determine the base errors. Figure 3(f) indicates that REGBOOST has a clear advantage
here. REGBOOST is also far better than the semi-supervised algorithm proposed in [12]
(their best test error using the same settings is 18%).

5 Conclusion

In this paper we proposed to combine two powerful ideas, boosting and manifold learn-
ing. The algorithm can be used to boost any regularized base learner. Experimental results
indicate that REGBOOST slightly improves ADABOOST by incorporating knowledge on
the structure of the data into base classifier selection. REGBOOST also significantly im-
proves a recently proposed semi-supervised algorithm based on the same regularizer. In
the immediate future our goal is to conduct a larger scale experimental study in which
we optimize all the parameters of the algorithm, and compare it not only to ADABOOST,
but also to marginal ADABOOST, that is, REGBOOST with a constant penalty 6. Marginal
ADABOOST might exhibit a similar behavior on the supervised task (sparsity, reduced num-
ber of admissible base classifiers), however, it can not be used to semi-supervised learning.
We also plan to experiment with other penalties which are computationally less costly than
the Laplacian penalty.
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