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Abstract

Many interesting multiclass problems can be cast in the general frame-
work of label ranking defined on a given set of classes. The evaluation
for such a ranking is generally given in terms of the number of violated
order constraints between classes. In this paper, we proposeetes-

ence Learning Modeds a unifying framework to model and solve a large
class of multiclass problems in a large margin perspective. In addition,
an original kernel-based method is proposed and evaluated on a ranking
dataset with state-of-the-art results.

1 Introduction

The presence of multiple classes in a learning domain introduces interesting tasks besides
the one to select the most appropriate class for an object, the well-known (single-label
multiclass problem. Many others, including learning rankings, multi-label classification,
hierarchical classification and ordinal regression, just to name a few, have not yet been
sufficiently studied even though they should not be considered less important. One of the
major problems when dealing with this large set of different settings is the lack of a single
universal theory encompassing all of them.

In this paper we focus on multiclass problems where labels are given as partial order con-
straints over the classes. Tasks naturally falling into this family inctiedegory ranking,

which is the task to infer full orders over the classeimary category ranking, which is

the task to infer orders such that a given subset of classes are top-ranked, and any general
(g-label) classification problem.

Recently, efforts have been made in the direction to unify different ranking problems. In
particular, in [5, 7] two frameworks have been proposed which aim at inducing a label
ranking function from examples. Similarly, here we consider labels coded into sets of pref-
erence constraints, expressedoesference graphsver the set of classes. The multiclass
problem is then reduced to learning a good sebofing functiongble to correctly rank the
classes according to the constraints which are associated to the label of the examples. Each
preference graph disagreeing with the obtained ranking function will count as an error.

The primary contribution of this work is to try to make a further step towards the unifica-
tion of different multiclass settings, and different models to solve them, by proposing the
Preference Learning Model, a very general framework to model and study several kinds of
multiclass problems. In addition, a kernel-based method particularly suited for this setting
is proposed and evaluated in a binary category ranking task with very promising results.



TheMulticlass Setting Let(2 be a set of classes, we consider a multiclass setting where
data are supposed to be sampled according to a probability distritiDtiover X' x Y,

X C R% and an hypothesis space of functigis= {fe : X x Q — R} with parameters

©. Moreover, a cost function(x, y|©) defines the cost suffered by a given hypothesis on
a patternx € X having labely € ). A multiclass learning algorithm searches for a set of
parameter®* such to minimize thérue cost, that is the expected value of the cost accord-
ing to the true distribution of data, i.€2;[0] = E(x ,)~plc(x,y|©)]. The distributionD

is typically unknown, while it is available a training s&t= {(x1,v1), ..., (Xn, yn)} With
examples drawn.i.d. from D. An empirical approximation of the true cost, also referred
to as theempirical cost, is defined bR.[©,S] = 2 37" | ¢(x;, v:|©).

2 ThePreference Learning Model

In this section, starting from the general multiclass setting described above, we propose a
general technique to solve a large family of multiclass settings. The basic idea is to "code”
labels of the original multiclass problem as sets of ranking constraints given as preference
graphs. Then, we introduce tfirreference Learning Mod€PLM) for the induction of
optimal scoring functions that uses those constraints as supervision.

In the case of ranking-based multiclass settings, labels are given as partial orders over
the classes (see [1] for a detailed taxonomy of multiclass learning problems). Moreover,
as observed in [5], ranking problems can be generalized by considering labels given as
preference graphs over a set of clas8es {w1,...,wn,}, and trying to find a consistent
ranking functionfr : X — II(Q) whereIl(Q) is the set of permutations ovér. More
formally, considering a se?, apreference graplor "p-graph” overQ is a directed graph

v = (N, A) whereN C Q is the set of nodes andl is the set of arcs of the graph accessed

by the functionA(v). An arca € A is associated with its starting nodg = w,(a) and

its ending nodes. = w.(a) and represents the information that the class preferred to,

and should be ranked higher than, The set of p-graphs ovér will be denoted byG(?).

Let be given a set of scoring functiofis X x  — R with parameter® working as pre-
dictors of the relevance of the associated class to given instances. A definition of a ranking
function naturally follows by taking the permutation of element&icorresponding to the
sorting of the values of these functions, i.£z(x|©) = argsort,., f(x,w|©). We say

that a preference arc = (w;,w,) is consistent with a ranking hypothesig(x|©), and

we writea C fr(x|0), whenf(x,ws|0) > f(x,w.|©) holds. Generalizing to graphs, a
p-graphyg is said to be consistent with an hypothegigx|0), and we writegy C fr(x|O),

if every arc compounding it is consistent, i€C fr(x|0) < Va € A(g),a C fr(x]O).

The PLM Mapping Let us start by considering the way a multiclass problem is trans-
formed into a PLM problem. As seen before, to evaluate the quality of a ranking func-
tion fr(x|©) is necessary to specify the nature of a cost functitn y|©). Specifi-

cally, we consider cost definitions corresponding to associate penalties whenever uncor-
rect decisions are made (e.g. a classification error for classification problems or wrong
ordering for ranking problems). To this end, as in [5], we consider a label mapping
G:yw— {n1(y),.-.,94,(y)} where a set of subgraphg(y) € G(2) are associated

to each label; € ). The total cost suffered by a ranking hypothegison the example

x € X labeledy € Y is the number of p-graphs #(y) not consistent with the ranking, i.e.
c(x,y|0) = ;?y:l[[gj(y) Z f(x/©)], where[b] is 1 if the conditiond holds,0 otherwise.

Let us describe three particular mappings proposed in [5] that seem worthwhile ofihote:
Theidentity mapping, denoted l§y;, where the label is mapped on itself and every incon-
sistent graph will have a unitary co$i) thedisagreement mapping, denoteddy, where

a simple (single-preference) subgraph is built for each aryy), and(iii) thedomination
mapping, denoted by, where for each node,. in y a subgraph consisting af,. plus



é%gé\ @*é\@@iﬁngz@\@/@g:gg :

(a) (b)

Figure 1. Examples of label mappings for 2-label classification (a-c) and ranking (d-f).

the nodes of its outgoing set is built. To clarify, in Figure 1 a set of mapping examples
are proposed. Considerity = {1,2, 3,4, 5}, in Figure 1-(a) the labej = [1,2|3,4, 5]

for a 2-label classification setting is given. In particular, this corresponds to the mapping
G(y) = Gr(y) = y where a single wrong ranking of a class makes the predictor to pay a
unit of cost. Similarly, in Figure 1-(b) the label mappiggy) = Gp(y) is presented for

the same problem. Another variant is presented in Figure 1-(c) where the label mapping
G(y) = Ga(y) is used and the target classes are independently evaluated and their errors
cumulated. Note that all these graphs are subgraphs of the original label in 1-(a). As an
additional example we consider the three cases depicted in the right hand side of Figure 1
that refer to a ranking problem with three clas€es- {1, 2,3}. In Figure 1-(d) the label

y = [1|2]3] is given. As before, this also corresponds to the label maphing = G;(y).

Two alternative cost definitions can be obtained by using the p-graphs (sets of basic pref-
erences actually) depicted in Figure 1-(e) and 1-(f). Note that the cost functions in these
cases are different. For example, assufipéx|0®) = [3|1|2], the p-graph in (e) induces a
coste(x, y,|©) = 2 while the p-graph in (f) induces a casix, y.|©) = 1.

The PLM Setting Once the label mapping is fixed, the preference constraints of
the original multiclass problem can be arranged into a set of preference constraints.
Specifically, we consider the sét(S) = Uy, ,,)es V(xi,y:) where V(x,y) =
{(x,95(¥))}jequ,...q,y @nd each paifx, g) € X x G(Q) is a preference constraint. Note
that the same instance can be replicated{§). This can happen, for example, when
multiple ranking constraints are associated to the same example of the original multiclass
problem. Because of this, in the following, we prefer to use a different notation for the
instances in preference constraints to avoid confusion with training examples.

Notions defined for the standard classification setting are easily extended to PLM. For a
preference constrairiy, g) € V, the constraint errorincurred by the ranking hypothesis
fr(v|®) is given byd(v,g|®) = [¢g Z fr(v|®)]. The empirical cost is then defined

as the cost over the whole constraint set, [0, V] = vazl 0(v4, 9;|©). In addition,

we define themargin of an hypothesis on a pattesnfor a preference are = (ws, we),
expressing how well the preference is satisfied, as the difference between the scores of
the two linked nodes, i.eps(v,a|®) = f(v,ws|®) — f(v,w.|0). The margin for a p-
graph constraintv, g) is then defined as the minimum of the margin of the compounding
preferencespg (v, g|©) = mingea(q) pa(v,a|©), and gives a measure of how well the
hypothesis fulfills a given preference constraint. Note that, consistently with the classifica-
tion setting, the margin is greater théuf and only if g C fr(v|©).

Learningin PLM Inthe PLM we try to learn a "simple” hypothesis able to minimize the
empirical cost of the original multiclass problem or equivalently to satisfy the constraints in
V(S) as much as possible. The learning setting of the PLM can be reduced to the following
scheme. Given a sét of pairs(v;,g;) € X x G(Q),i € {1,...,N}, N = > | qy.,

find a set of parameters for the ranking functjgn(v|©) able to minimize a combination

of a regularization and an empirical loss tetth= arg mine{R.[©, V] + uR(O)} with

1 a given constant. However, since the direct minimization of this functional is hard due
to the non continuous form of the empirical error term, we use an upper-bound on the true
empirical error. To this end, let be defined a monotonically decreasing loss fudicsioch



thatL(p) > 0 and L(0) = 1, then by defining a margin-based loss

Le(v,910) = L (pa(v,g10)) = Jnax L(pa(v,al®)) )
for a p-graph constraintv,g) € V and recalling the margin definition, the condition
(v, g|®) < Lo(v, g|©) always holds thus obtaining, [0, V] < 3=~ | Le(vi, ¢:]©).

The problem of learning with multiple classes (up to constant factors) is then reduced to a
minimization of a (possibly regularized) loss functional

O = arg m(_i)n{ﬁ(W@) + uR(0)} @)

whereL(V|0) = Zfil maXaea(g,) L(f(Vi,ws(a)|©) — f(vi,we(a)|©)).

Many different choices can be made for

| Method | L(p) | the functionL(-). Some well known
[B-margin Perceptron [1 — 3= 1p], examples are the ones given in the ta-
Logistic Regression | log, (1 + exp(—p)) ble at the left. Note that, if the function
Soft margin 1—ply L(-) is convex with respect to the para-
Mod. Least Square | [1 —p i meters_@, the minimization of the func-
Exponential exp(—p) tional in Eq. (2) will result quite easy

given a convex regularization term.

The only difficulty in this case is represented by thex term. A shortcoming to this
problem would consist in upper-bounding theix with the sum operator, though this
would probably lead to a quite row approximation of the indicator function when consid-
ering p-graphs with many arcs. It can be shown that a number of related works, e.g. [5, 7],
after minor modifications, can be seen as PLM instances when usisgth@pproxima-

tion. Interestingly, PLM highlights that this approximation in fact corresponds to a change
on the label mapping obtained by decomposing a complex preference graph into a set of
binary preferences and thus changing the cost definition we are indeed minimizing. In this
case, using eith&fp or G, is not going to make any difference at all.

Multiclass Prediction through PLM A multiclass prediction is a functiofl : X — Y
mapping instances to their associated label. Let be given a label mapping defined as
G(y) =1{91(¥),...,94,(y)}. Then, the PLM multiclass prediction is given as the la-
bel whose induced preference constraints mostly agree with the current hypothesis, i.e.
H(x) = argmin, L(V(x,y)|0©) whereV(x,y) = {(x,9;(y))}je{1,...q,}- It can be shown

that many of the most effective methods used for learning with multiple classes, including
output coding (ECOC, OvVA, OvO), boosting, least squares methods and all the methods in
[10, 3, 7, 5] fit into the PLM setting. This issue is better discussed in [1].

3 Preference Learning with Kernel Machines

In this section, we focus on a particular setting of the PLM framework consisting of
a multivariate embeddingy : X — R® of linear functions parameterized by a set

of vectorsW,, € R k € {1,...,s} accommodated in a matri/ € R**9, ie.
h(x) = [hi(x),...,hs(x)] = [(W1,x),..., (W, x)]. Furthermore, we consider the set
of classes? = {w1,...,w, } andM € R™*5 a matrix of codes of length with as many

rows as classes. This matrix has the same role as the coding matrix in multiclass coding,
e.g. in ECOC. Finally, the scoring function for a given class is computed as the dot product
between the embedding function and the class code vector

Fx we| W, M) = (h(x), M) = Y Myp(Wi, x) ©)
k=1



Now, we are able to describe a kernel-based method for thetigffesolution of the PLM
problem. In particular, we present the problem formulation and the associated optimization
method for the task of learning the embedding function given fixed codes for the classes
(embeddingproblem). Another worthwhile task consists in the optimization of the codes
for the classes when the embedding function is kept fixed (coplinglem), or even to
perform a combination of the two (see for example [8]). A deeper study of the embedding-
coding version of PLM and a set of examples can be found in [1].

PLM Keder's Construction As a first step, we generalize the Kesler's Construction
originally defined for single-label classification (see [6]) to the PLM setting, thus showing
that the embedding problem can be formulated as a binary classification problem in a higher
dimensional space when new variables are appropriately defined. Specifically, consider
the vectory(a) = (M., (o) — M., (a)) € R® defined for every preference arc in a given
preference constraint, thatis= (w,,w.) € A(g). For every instance, and preference
(ws,we ), the preference conditiony (v;,a) > 0 can be rewritten as

pa(vi,a) = [(vi,ws) = f(vi,we) = (y(a),h(v;)) = =1 Yk(a) (Wi, vi)
= ZZ=1<Wk7yk(a)vi> = Zk 1<Wka[za]> = <W,z;‘>20 @

where[-]; denotes thé-th chunk of a s-chunks vectdW € R*? is the vector obtained by
sequentially arranging the vectdig,, andz¢ = y(a) ® v; € R*? is the embedded vector
made of thes chunks defined byz¢]; = yi(a)v;, k € {1,...,s}. From this derivation it

turns out that each preference of a constraint in th&’sein be viewed as an example of
dimensions - d in a binary classification problem. Each pé&ir;, g;) € V then generates

a number of examples in this extended binary problem equal to the number of arcs of the
p-graphg; for a total of " | |A(g;)| examples. In particular, the s&t= {z¢} is linearly
separable in the higher dimensional problem if and only if there exists a consistent solution
for the original PLM problem. Very similar considerations, omitted for space reasons,
could be given for the coding problem as well.

TheKernel Preference Learning Optimization As pointed out before, the central task

in PLM is to learn scoring functions in such a way to be as much as possible consistent
with the set of constraints il. This is done by finding a set of parameters minimizing a
loss function that is an upper-bound on the empirical error function. For the embedding
problem, instantiating the problem (2), and choosing2tmerm of the parameters as regu-
larizer, we obtaifV = argminw + S | Le(vi, gi|[W, M) + u||W||> where, according

to Eq.(1), the loss for each preference constraint is computed as the maximum between the
losses of all the associated preferences, thaf is max,c 4(4,) L((W, z})).

When the constraint set W contains basic preferences only (that is p-graphs consisting of

a single ara,; = A(g;)), the optimization problem can be simplified into the minimization

of a standard functional combining a loss function with a regularization term. Specifically,
all the losses presented before can be used and, for many of them, it is possible to give a
kernel-based solution. See [11] for a set of examples of loss functions and the formulation
of the associated problem with kernels.

The Kernel Preference Learning Machine For the general case of p-graphs possibly
containing multiple arcs, we propose a kernel-based method (hereafter referré@taels
Preference Learning Machiner KPLM for brevity) for PLM optimization which adopts

the lossmaxin Eq. (2). Borrowing the idea of soft-margin [9], for each preference arc, a
linear loss is used giving an upper bound on the indicator function loss. Specifically, we
use the SVM-like soft margin los5(p) = [1 — p]+.

Summarizing, we require a set of small norm predictors that fulfill the soft constraints of



the problem. These requirements can be expressed by theifajlguadratic problem

minw ¢ 3[[WI> +C 37 & o
- . <W,Z?> >1-¢&, 1€ {1,..,N},a€A(gi) 5
subject to.{ & >0 i€l N}
Note that differently from the SVM formulation for the binary classification setting, here
the slack variableg; are associated to multiple examples, one for each preference arc in
the p-graph. Moreover, the optimal value of heorresponds to the loss value as defined
by L;. As it is easily verifiable, this problem is convex and it can be solved in the usual
way by resorting to the optimization of the Wolfe dual problem. Specifically, we have to
find the saddle point (minimization w.r.t. to the primal variab{&¥, £} and maximization
w.r.t. the dual variable$a, A}) of the following Lagrangian:

QW, &, )) = FIWIPH+CEN &+ a1 =& — (W, 2))
— va /\zfza s.t. Oz?, A >0
(6)
By differentiating the Lagrangian with respect to the primal variables and imposing the
optimality conditions we obtain the set of constraints that the variables have to fulfill in
order to be an optimal solution

o) N a,a __ _ N a,,a
ﬁ = W-33 ZaEA(gi) atzl =06 W =737 ZaeA(g,;) o 'Z;
o6, C - ZaeA(gi) af =i =0& ZaeA(g,i) af <C ()

Substituting conditions (7) in (6) and omitting constants that do not change the solution,
the problem can be restated as

maXe ELa of — % ZZ Zml Ejgaj yk(ai)yk(aj)@?ia?j (i, v;)

. J ag >0, i€{l,.,N},a e A(g) 8
subjectto.{ S et <, iefl.. N}

SinceW;, = Ei,a yr(a)adv; = Zi,a[Mws(a) — ]Vlwc(a)]Za?vi, k = 1,..,s, we obtain
hi(x) = (Wi, x) = >, [My, () — Mo, ()]305 (vi, x). Note that any kernéi(-, -) can be
substituted in place of the linear dot prodygct to allow for non-linear decision functions.

Embedding Optimization The problem in (8) recalls the one obtained for single-label
multiclass SVM [1, 2] and, in fact, its optimization can be performed in a similar way.
Assuming a number of arcs for each preference constraint eqyathe dual problem in

(8) involvesN - ¢ variables leading to a very large scale problem. However, it can be noted
that the independence of constraints among the different preference constraints allows for
the separation of the variables M disjoints sets of variables each.

The algorithm we propose for the optimization of the overall problem consists in iteratively
selecting a preference constraint from the constraints set (a p-graph) and then optimizing
with respect to the variables associated with it, that is one for each arc of the p-graph. From
the convexity of the problem and the separation of the variables, since on each iteration we
optimize on a different subset of variables, this guarantees that the optimal solution for the
Lagrangian will be found when no new selections can lead to improvements.

The graph to optimize at each step is selected on the basis of an heuristic selection strategy.
Let the preference constraifw;, g;) € V be selected at a given iteration, to enforce the
constrain® ¢ 4, & +Ai = C, A; = 0, two elements from the set of variablfs{|a €

A(g;)} U {\;} will be optimized in pairs while keeping the solution inside the feasible
regiona$ > 0. In particular, lety; andy. be the two selected variables, we restrict the



updates to the formy; <« x1—v and s < x2+v with optimal choices for. The variables

which most violate the constraints are iteratively selected until they reach optimality KKT
conditions. For this, we have devised a KKT-based procedure which is able to select these
variables in time linear with the number of classes. For space reasons we omit the details
and we do not consider at all any implementation issue. Details and optimized versions of
this basic algorithm can be found in [1].

Generalization of KPLM  As a first immediate result we can give an upper-bound on the
leave-one-out error by utilizing the sparsity of a KPLM solution, nanigBO < |V|/N,
whereV = {i € {1,..., N}|max,c (4, af > 0} is the set of support vectors. Another
interesting result about the generalization ability of a KPLM is in the following theorem.

Theorem 1 Consider a KPLM hypothesi® = (W, M) with >°_, [|[W,||> = 1 and
|[M||* < R such thatmin, ey pa(v,g|©) > ~. Then, for any probability distri-
butionD on X’ x Y with support in a ball of radiug? » around the origin, with probability
1 — § overn random example§, the following bound for the true cost holds

< 20QA <64R2 eny 32

n 4
Ri0O] < o log SR2 log e + log 6)

Algr(y)| < A, re{l,.. "qy} andR = 2Ry Rx.

n

wherevy € ), ¢, < Q,

Proof. Similar to that of Theorem.11 in [7] when noting that the size of examplesih
are upper-bounded b = 2R, R .

4 Experiments

Experimental Setting We performed experiments on the ‘ModApte” split of Reuters-
21578 dataset. We selected themost popular categories thus obtaining a reduced set

of 6,490 training documents and a set of 2,545 test documents. The corpus was then pre-
processed by discarding humbers and punctuation and converting letters to lowercase. We
used a stop-list to remove very frequent words and stemming has been performed by means
of Porter’s stemmer. Term weights are calculated according tif/itiefunction. Term se-

lection was not considered thus obtaining a set of 28,006 distinct features.

We evaluated our framework on the binary category ranking task induced by the original
multi-label classification task, thus requiring rankings having target classes of the original
multi-label problem on top. Five different well-known cost functions have been used. Let
x be an instance having ranking lahell Err is the cost function indicating a non-perfect
ranking and corresponds to the identity mapping in Figure 1H&Y.r is the cost defined

as the number of relevant classes uncorrectly ranked by the algorithm and corresponds to
the domination mapping in Figure 1-(lErr is the cost obtained counting the number of
uncorrect rankings and corresponds to the disagreement mapping in Figure 1-(c). Other two
well-known Information Retrieval (IR) based cost functions have been usedOmé&err

cost function that i4 whenever the top ranked class is not a relevant class and the average

.. . . . 1 \{r'ey;rank(x,r’)grank(x,r)}\
precision cost function, which ibvgP = > rankocr) :

Results The model evaluation has been performed by comparing three different label
mappings for KPLM and the baseline MMP algorithm [4], a variant of the Perceptron
algorithm for ranking problems, with respect to the above-mentioned ranking losses. We
used the configuration which gave the best results in the experiments reported in [4]. KPLM
has been implemented settiag= m and the standard basis vectesrs € R as codes
associated to the classes. A linear keit{sd, y) = ((x,y) + 1) was used. Model selection

for the KPLM has been performed by means of a 5-fold cross validation for different values



of the parametef’. The optimal parameters have been chosen as the ones minimizing the
mean of the values of the loss (the one used for training) over the different folders. In Table
1 we report the obtained results. It is clear that KPLM definitely outperforms the MMP
method. This is probably due to the use of margins in KPLM. Moreover, using identity and
domination mappings seems to lead to models that outperform the ones obtained by using
the disagreement mapping. Interestingly, this also happens when comparing with respect
to its own corresponding cost. This can be due to a looser approximation (as a sum of
approximations) of the true cost function. The same trend was confirmed by another set of
experiments on artificial datasets that we are not able to report here due to space limitations.

| Method | IErr % [ DErr % | dErr % [ OneErr % | AvgP % |
MMP 5.07 4.92 0.89 4.28 97.49
KPLM (Gr) 3.77 3.66 0.55 3.10 98.25
KPLM (Gp) 3.81 3.59 0.54 3.14 98.24
KPLM (Gy) 4.12 4.13 0.66 3.58 97.99

Table 1: Comparisons of ranking performance for differenthoés using different loss
functions according to different evaluation metrics. Best results are shown in bold.

5 Conclusions and Future Work

We have presented a common framework for the analysis of general multiclass problems
and proposed a kernel-based method as an instance of this setting which has shown very
good results on a binary category ranking task. Promising directions of research, that we
are currently pursuing, include experimenting with coding optimization and considering to
extend the current setting to on-line learning, interdependent labels (e.g. hierarchical or any
other structured classification), ordinal regression problems, and classification with costs.
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