
Synchronization of neural networks by mutual
learning and its application to cryptography

Einat Klein
Department of Physics

Bar-Ilan University
Ramat-Gan, 52900 Israel

Rachel Mislovaty
Department of Physics

Bar-Ilan University
Ramat-Gan, 52900 Israel

Ido Kanter
Department of Physics

Bar-Ilan University
Ramat-Gan, 52900 Israel

Andreas Ruttor
Institut für Theoretische Physik,

Universität Würzbur
Am Hubland 97074 Würzburg, Germany

Wolfgang Kinzel
Institut für Theoretische Physik,

Universität Würzbur
Am Hubland 97074 Würzburg, Germany

Abstract

Two neural networks that are trained on their mutual output synchronize
to an identical time dependant weight vector. This novel phenomenon
can be used for creation of a secure cryptographic secret-key using a
public channel. Several models for this cryptographic system have been
suggested, and have been tested for their security under different sophis-
ticated attack strategies. The most promising models are networks that
involve chaos synchronization. The synchronization process of mutual
learning is described analytically using statistical physics methods.

1 Introduction

Neural networks learn from examples. This concept has extensively been investigated using
models and methods of statistical mechanics [1, 2]. A ”teacher” network is presenting
input/output pairs of high dimensional data, and a ”student” network is being trained on
these data. Training means, that synaptic weights adapt by simple rules to the i/o pairs.

When the networks — teacher as well as student — have N weights, the training process
needs of the order of N examples to obtain generalization abilities. This means, that after
the training phase the student has achieved some overlap to the teacher, their weight vectors
are correlated. As a consequence, the student can classify an input pattern which does not
belong to the training set. The average classification error decreases with the number of
training examples.

Training can be performed in two different modes: Batch and on-line training. In the first
case all examples are stored and used to minimize the total training error. In the second
case only one new example is used per time step and then destroyed. Therefore on-line
training may be considered as a dynamic process: at each time step the teacher creates
a new example which the student uses to change its weights by a tiny amount. In fact,
for random input vectors and in the limit N → ∞, learning and generalization can be
described by ordinary differential equations for a few order parameters [3].

w
σσ

w

x

Figure 1: Two perceptrons receive an identical input x and learn their mutual output bits σ.

On-line training is a dynamic process where the examples are generated by a static network
- the teacher. The student tries to move towards the teacher. However, the student network
itself can generate examples on which it is trained. What happens if two neural networks
learn from each other? In the following section an analytic solution is presented [6], which
shows a novel phenomenon: synchronization by mutual learning. The biological conse-
quences of this phenomenon are not explored, yet, but we found an interesting application
in cryptography: secure generation of a secret key over a public channel.

In the field of cryptography, one is interested in methods to transmit secret messages be-
tween two partners A and B. An attacker E who is able to listen to the communication
should not be able to recover the secret message.

In 1976, Diffie and Hellmann found a method based on number theory for creating a secret
key over a public channel accessible to any attacker[7]. Here we show how neural networks
can produce a common secret key by exchanging bits over a public channel and by learning
from each other.

2 Mutual Learning

We start by presenting the process of mutual learning for a simple network: Two percep-
trons receive a common random input vector x and change their weights w according to
their mutual bit σ, as sketched in Fig. 1. The output bit σ of a single perceptron is given by
the equation

σ = sign(w · x) (1)
x is an N -dimensional input vector with components which are drawn from a Gaussian with
mean 0 and variance 1. w is a N -dimensional weight vector with continuous components
which are normalized,

w · w = 1 (2)

The initial state is a random choice of the components w
A/B
i , i = 1, ...N for the two weight

vectors wA and wB . At each training step a common random input vector is presented to
the two networks which generate two output bits σA and σB according to (1). Now the
weight vectors are updated by the perceptron learning rule [3]:

wA(t + 1) = wA(t) +
η

N
xσB Θ(−σAσB)

wB(t + 1) = wB(t) +
η

N
xσA Θ(−σAσB) (3)

Θ(x) is the step function. Hence, only if the two perceptrons disagree a training step is
performed with a learning rate η. After each step (3), the two weight vectors have to be
normalized. In the limit N → ∞, the overlap

R(t) = wA(t) · wB(t) (4)

0 0.5 1 1.5 2
η

−1

−0.5

0

0.5

1

co
s(

θ)

theory
simulation

ηc

cos(θ)c

Figure 2: Final overlap R between two perceptrons as a function of learning rate η. Above
a critical rate ηc the time dependent networks are synchronized. From Ref. [6]

has been calculated analytically [6]. The number of training steps t is scaled as α = t/N ,
and R(α) follows the equation

dR

dα
= (R + 1)

(

√

2

π
η(1 − R) − η2 ϕ

π

)

(5)

where ϕ is the angle between the two weight vectors wA and wB , i.e. R = cos ϕ. This
equation has fixed points R = 1, R = −1, and

η√
2π

=
1 − cos ϕ

ϕ
(6)

Fig. 2 shows the attractive fixed point of (5) as a function of the learning rate η. For small
values of η the two networks relax to a state of a mutual agreement, R → 1 for η → 0.
With increasing learning rate η the angle between the two weight vectors increases up to
ϕ = 133◦ for

η → ηc
∼= 1.816 (7)

Above the critical rate ηc the networks relax to a state of complete disagreement, ϕ =
180◦, R = −1. The two weight vectors are antiparallel to each other, wA = −wB .

As a consequence, the analytic solution shows, well supported by numerical simulations
for N = 100, that two neural networks can synchronize to each other by mutual learning.
Both networks are trained to the examples generated by their partner and finally obtain an
antiparallel alignment. Even after synchronization the networks keep moving, the motion
is a kind of random walk on an N-dimensional hypersphere producing a rather complex bit
sequence of output bits σA = −σB [8].

3 Random walk in weight space

We want to apply synchronization of neural networks to cryptography. In the previous sec-
tion we have seen that the weight vectors of two perceptrons learning from each other can
synchronize. The new idea is to use the common weights wA = −wB as a key for en-
cryption [11]. But two issues have to be solved yet: (i) Can an external observer, recording
the exchange of bits, calculate the final wA(t) ? The essence of using mutual learning as
an encryption tool is the fact that while the parties preform a mutual process in which they

react towards one another, the attacker preforms a learning process, in which the ’teacher’
does not react towards him. (ii) Does this phenomenon exist for discrete weights? Since
communication is usually based on bit sequences, this is an important practical issue. Both
issues are discussed below.

Synchronization occurs for normalized weights, unnormalized ones do not synchronize [6].
Therefore, for discrete weights, we introduce a restriction in the space of possible vectors
and limit the components w

A/B
i to 2L + 1 different values,

w
A/B
i ∈ {−L,−L + 1, ..., L − 1, L} (8)

In order to obtain synchronization to a parallel – instead of an antiparallel – state wA = wB ,
we modify the learning rule (3) to:

wA(t + 1) = wA(t) − xσAΘ(σAσB) wB(t + 1) = wB(t) − xσBΘ(σAσB) (9)

Now the components of the random input vector x are binary xi ∈ {+1,−1}. If the two
networks produce an identical output bit σA = σB , then their weights move one step in
the direction of −xiσ

A. But the weights should remain in the interval (8), therefore if any
component moves out of this interval, |wi| = L+1, it is set back to the boundary wi = ±L.

Each component of the weight vectors performs a kind of random walk with reflecting
boundary. Two corresponding components wA

i and wB
i receive the same random number

±1. After each hit at the boundary the distance |wA
i − wB

i | is reduced until it has reached
zero. For two perceptrons with a N -dimensional weight space we have two ensembles of
N random walks on the interval {−L, ..., L}. We expect that after some characteristic time
scale τ = O(L2) the probability of two random walks being in different states decreases as
P (t) ∼ P (0)e−t/τ . Hence the total synchronization time should be given by N · P (t) '
1 which gives tsync ∼ τ ln N . In fact, our simulations show the synchronization time
increases logarithmically with N .

4 Mutual Learning in the Tree Parity Machine

A single perceptron transmits too much information. An attacker, who knows the set of
input/output pairs, can derive the weights of the two partners. On one hand, the information
should be hidden so that the attacker does not calculate the weights, but on the other hand
enough information should be transmitted so that the two partners can synchronize. We
found that multilayer networks with hidden units may be candidates for such a task [11].
More precisely, we consider a Tree Parity Machine(TPM), with three hidden units as shown
in Fig. 3.

131 21 1

2 ... N 21 ... N 2

2

N...11

Figure 3: A tree parity machine with K = 3

Each hidden unit is a perceptron (1) with discrete weights (8). The output bit τ of the total
network is the product of the three bits of the hidden units

τA = σA
1 σA

2 σA
3 τB = σB

1 σB
2 σB

3 (10)
At each training step the two machines A and B receive identical input vectors x1, x2, x3.
The training algorithm is the following: Only if the two output bits are identical, τA = τB ,
the weights can be changed. In this case, only the hidden unit σi which is identical to τ
changes its weights using the Hebbian rule

wA
i (t + 1) = wA

i (t) − xiτ
A (11)

The partner as well as any attacker does not know which one of the K weight vectors is
updated. The partners A and B react to their mutual output and move signals τA and τB ,
whereas an attacker can only receive these signals but not influence the partners with its
own output bit. This is the essential mechanism which allows synchronization but pro-
hibits learning. Nevertheless, advanced attackers use different heuristics to accelerate their
synchronization, as described in the next section.

5 Attackers

The following are possible attack strategies, which were suggested by Shamir et al.[12]:
The Genetic Attack, in which a large population of attackers is trained, and every new
time step each attacker is multiplied to cover the 2K−1 possible internal representations of
{σi} for the current output τ . As dynamics proceeds successful attackers stay while the
unsuccessful are removed. The Probabilistic Attack, in which the attacker tries to follow
the probability of every weight element by calculating the distribution of the local field of
every input and using the output, which is publicly known. The Naive Attacker, in which
the attacker imitates one of the parties.

More successful is the Flipping Attack strategy, in which the attacker imitates one of the
parties, but in steps in which his output disagrees with the imitated party’s output, he
negates (”flips”) the sign of one of his hidden units. The unit most likely to be wrong
is the one with the minimal absolute value of the local field, therefore that is the unit which
is flipped.

While the synchronization time increases with L2[15], the probability of finding a success-
ful flipping-attacker decreases exponentially with L,

P ∝ e−yL

as seen in Figure 4. Therefore, for large L values the system is secure[15]. Every time step,
the parties either appraoch each other (”attractive step” or drift apart (”repulsive step”).
Close to synchronization the probability for a repulsive step in the mutual learning between
A and B scales like (ε)

2, while in the dynamic learning between the naive attacker C and
A it scales like ε, where we define ε = Prob

(

σC
i 6= σA

i

)

[18].

It has been shown that among a group of Ising vector students which perform learning, and
have an overlap R with the teacher, the best student is the center of mass vector (which was
shown to be an Ising vector as well) which has an overlap Rcm ∝

√
R , for R ∈ [0 : 1][19].

Therefore letting a group of attackers cooperate throughout the process may be to their
advantage. The most successful attack strategy, the “Majority Flipping Attacker” uses a
group of attackers as a cooperating group rather than as individuals. When updating the
weights, instead of each attacker being updated according to its own result, all are updated
according to the majority’s result. This “team-work” approach improves the attacker’s
performance. When using the majority scheme, the probability for a successful attacker
seems to approach a constant value ∼ 0.5 independent of L.

0.001

0.01

0.1

1

0 2 4 6 8 10 12

L

P

Flipping attack

Majority-Flipping attack

P = 1.55 exp(-0.4335 L)

Figure 4: The attacker’s success probability P as a function of L, for the flipping attack and
the majority-flipping attack, with N=1000, M=100, averaged over 1000 samples. To avoid
fluctuations, we define the attacker successful if he found out 98% of the weights

6 Analytical description

The semi-analytical description of this process gives us further insight to the synchroniza-
tion process of mutual and dynamic learning. The study of discrete networks requires dif-
ferent methods of analysis than those used for the continuous case. We found that instead
of examining the evolution of R and Q, we must examine (2L+1)× (2L+1) parameters,
which describe the mutual learning process. By writing a Markovian process that describes
the development of these parameters, one gains an insight into the learning procedure. Thus
we define a (2L + 1)× (2L + 1) matrix, Fµ, in which the state of the machines in the time
step µ is represented. The elements of F, are fqr, where q, r = −L, ... − 1, 0, 1, ...L.
The element fqr represents the fraction of components in a weight vector in which the A’s
components are equal to q and the matching components in d unit B are equal to r. Hence,
the overlap between the two units as well as their norms are defined through this matrix,

R =

L
∑

q,r=−L

qrfqr, QA =

L
∑

q=−L

q2fqrQ
B =

L
∑

r=−L

r2fqr (12)

The updating of matrix elements is described as follows: for the elements with q and r
which are not on the boundary, (q 6= ±L and r 6= ±L) the update can be written in a
simple manner,

f+
q,r = θ (pα − ε) fq,r + θ (ε − pα)

(

1

2
fq+1,r−1 +

1

2
fq−1,r+1

)

. (13)

Our results indicate that the order parameters are not self-averaged quantities [16]. Several
runs with the same N , results in different curves for the order parameters as a function of
the number of steps, see Figure 5. This explains the non-zero variance of ρ as a results of
the fluctuations in the local fields induced by the input even in the thermodynamic limit.

7 Combining neural networks and chaos synchronization

Two chaotic system starting from different initial conditions can be synchronized by differ-
ent kinds of couplings between them. This chaotic synchronization can been used in neural

0 5 10 15 20

steps

-1

-0.8

-0.6

-0.4

-0.2

0

<ρ>

0 20 40 60 80 100

steps

-1

-0.8

-0.6

-0.4

-0.2

0

<ρ>

Figure 5: The averaged overlap 〈ρ〉 and its standard deviation as a function of the number
of steps as found from the analytical results (solid line) and simulation results (circles)
of mutual learning in TPMs. Inset: analytical results (solid line) and simulation results
(circles) results for the perceptron, with L = 1 and N = 104.

cryptography to enhance the cryptographic systems and to improve their security. A model
which combines a TPM and logistic maps and is hereby presented, was shown to be more
secure than the TPM discussed above. Other models which use mutual synchronization of
networks whose dynamics are those of the Lorenz system are now under research and seem
very promising.

In the following system we combine neural networks with logistic maps: Both partners A
and B use their neural networks as input for the logistic maps which generate the output
bits to be learned. By mutually learning these bits, the two neural networks approach each
other and produce an identical signal to the chaotic maps which – in turn – synchronize as
well, therefore accelerating the synchronization of the neural nets.

Previously, the output bit of each hidden unit was the sign of the local field[11]. Now we
combine the PM with chaotic synchronization by feeding the local fields into logistic maps:

sk(t + 1) = λ(1 − β)sk(t)(1 − sk(t)) +
β

2
h̃k(t) (14)

Here h̃ denotes a transformed local field which is shifted and normalized to fit into the
interval [0, 2]. For β = 0 one has the usual quadratic iteration which produces K chaotic
series sk(t) when the parameter λ is chosen correspondingly; here we use λ = 3.95. For
0 < β < 1 the logistic maps are coupled to the fields of the hidden units. It has been
shown that such a coupling leads to chaotic synchronization[17]: If two identical maps
with different initial conditions are coupled to a common external signal they synchronize
when the coupling strength is large enough, β > βc.

The security of key generation increases as the system approaches the critical point of
chaotic synchronization. The probability of a successful attack decreases like exp(−yL)
and it is possible that the exponent y diverges as the coupling constant between the neural
nets and the chaotic maps is tuned to be critical.

8 Conclusions

A new phenomenon has been observed: Synchronization by mutual learning. If the learning
rate η is large enough, and if the weight vectors keep normalized, then the two networks
relax to a parallel orientation. Their weight vectors still move like a random walk on a
hypersphere, but each network has complete knowledge about its partner.

It has been shown how this phenomenon can be used for cryptography. The two partners
can create a common secret key over a public channel. The fact that the parties are learning
mutually, gives them an advantage over the attacker who is learning one-way. In contrast
to number theoretical methods the networks are very fast; essentially they are linear filters,
the complexity to generate a key of length N scales with N (for sequential update of the
weights).

Yet sophisticated attackers which use ensembles of cooperating attackers have a good
chance to synchronize. However, advanced algorithms for synchronization, which involve
different types of chaotic synchronization seem to be more secure. Such models are sub-
jects of active research, and only the future will tell whether the security of neural network
cryptography can compete with number theoretical methods.

References
[1] J. Hertz, A. Krogh, and R. G. Palmer: Introduction to the Theory of Neural Compu-

tation, (Addison Wesley, Redwood City, 1991)
[2] A. Engel, and C. Van den Broeck: Statistical Mechanics of Learning, (Cambridge

University Press, 2001)
[3] M. Biehl and N. Caticha: Statistical Mechanics of On-line Learning and Generaliza-

tion, The Handbook of Brain Theory and Neural Networks, ed. by M. A. Arbib (MIT
Press, Berlin 2001)

[4] E. Eisenstein, I. Kanter, D.A. Kessler and W. Kinzel, Phys. Rev. Lett. 74, 6-9 (1995)
[5] I. Kanter, D.A. Kessler, A. Priel and E. Eisenstein, Phys. Rev. Lett. 75, 2614-2617

(1995);L. Ein-Dor and I. Kanter, Phys. Rev. E 57, 6564 (1998);M. Schröder and W.
Kinzel, J. Phys. A 31, 9131-9147 (1998); A. Priel and I. Kanter, Europhys. Lett.(2000)

[6] R. Metzler and W. Kinzel and I. Kanter, Phys. Rev. E 62, 2555 (2000)
[7] D. R. Stinson, Cryptography: Theory and Practice (CRC Press 1995)
[8] R. Metzler, W. Kinzel, L. Ein-Dor and I. Kanter, Phys. Rev. E 63, 056126 (2001)
[9] M. Rosen-Zvi, I. Kanter and W. Kinzel, cond-mat/0202350 (2002)

[10] R. Urbanczik, private communication
[11] I. Kanter, W. Kinzel and E. Kanter, Europhys. Lett., 57, 141 (2002).
[12] A.Klimov, A. Mityagin, A. Shamir, ASIACRYPT 2002 : 288-298.
[13] W. Kinzel, R. Metzler and I. Kanter, J. Phys. A. 33 L141 (2000).
[14] W. Kinzel, Contribution to Networks, ed. by H. G. Schuster and S. Bornholdt, to be

published by Wiley VCH (2002).
[15] R Mislovaty, Y. Perchenok, I. Kanter and W. Kinzel, Phys. Rev. E 66, 066102 (2002).
[16] G. Reents and R. Urbanczik, Phys. Rev. Lett., 80, 5445 (1998).
[17] R. Mislovaty, E. Klein, I. Kanter and W. Kinzel, Phys. Rev. Lett. 91, 118701 (2003).
[18] M. Rosen-Zvi, E. Klein, I. Kanter and W. Kinzel, Phys. Rev. E 66 066135 (2002).
[19] M. Copelli, M. Boutin, C. Van Der Broeck and B. Van Rompaey, Europhys. Lett., 46,

139 (1999).

