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Abstract

Linear Discriminant Analysis (LDA) is a well-known method for fea-
ture extraction and dimension reduction. It has been used widely in
many applications such as face recognition. Recently, anovel LDA algo-
rithm based on QR Decomposition, namely L DA/QR, has been proposed,
which is competitive in terms of classification accuracy with other LDA
algorithms, but it has much lower costs in time and space. However,
LDA/QR isbased on linear projection, which may not be suitable for data
with nonlinear structure. This paper first proposes an algorithm called
KDA/QR, which extends the LDA/QR algorithm to deal with nonlin-
ear data by using the kernel operator. Then an efficient approximation of
KDA/QR caled AKDA/QR isproposed. Experimentson faceimage data
show that the classification accuracy of both KDA/QR and AKDA/QR
are competitive with Generalized Discriminant Analysis (GDA), a gen-
eral kernel discriminant analysis algorithm, while AKDA/QR has much
lower time and space costs.

1 Introduction

Linear Discriminant Analysis [3] is a well-known method for dimension reduction. It has
been used widely in many applications such as face recognition [2]. Classical LDA aims
to find optimal transformation by minimizing the within-class distance and maximizing
the between-class distance simultaneously, thus achieving maximum discrimination. The
optimal transformation can be readily computed by computing the eigen-decomposition on
the scatter matrices.

Although LDA works well for linear problems, it may be less effective when severe non-
linearity is involved. To deal with such a limitation, nonlinear extensions through kernel
functions have been proposed. The main idea of kernel-based methods is to map the input
datato afeature space through a nonlinear mapping, where the inner productsin the feature



space can be computed by akernel function without knowing the nonlinear mapping explic-
itly [9]. Kernel Principal Component Analysis (KPCA) [10], Kernel Fisher Discriminant
Analysis (KFDA) [7] and Generalized Discriminant Analysis (GDA) [1] are, respectively,
kernel-based nonlinear extensions of the well known PCA, FDA and LDA methods.

To our knowledge, there are few efficient algorithms for general kernel based discriminant
agorithms — most known algorithms effectively scale as O(n?) where n is the sample
size. In[6, 8], S. Mika et al. made a first attempt to speed up KFDA through a greedy
approximation technique. However the algorithm was developed to handle the binary clas-
sification problem. For multi-class problem, the authors suggested the one against the rest
scheme by considering all two-class problems.

Recently, an efficient variant of LDA, namely LDA/QR, was proposed in [11, 12]. The
essence of LDA/QR is the utilization of QR-decomposition on a small size matrix. The
time complexity of LDA/QR islinear in the size of the training data, as well as the number
of dimensions of the data. Moreover, experiments in [11, 12] show that the classification
accuracy of LDA/QR is competitive with other LDA algorithms.

In this paper, we first propose an algorithm, namely KDA/QR?, which isanonlinear exten-
sion of LDA/QR. Since KDA/QR involves the whole kernel matrix, which is not scalable
for large datasets, we also propose an approximation of KDA/QR, namely AKDA/QR. A
distinct property of AKDA/QR isthat it scales as O(ndc), where n is the size of the data,
d isthe dimension of the data, and c is the number of classes.

We apply the proposed a gorithms on face image datasets and compare them with LDA/QR,
and Generalized Discriminant Analysis (GDA) [1], a general method for kernel discrim-
inant analysis. Experiments show that: (1) AKDA/QR is competitive with KDA/QR and
GDA in classification; (2) both KDA/QR and AKDA/QR outperform LDA/QR in classifi-
cation; and (3) AKDA/QR has much lower costsin time and space than GDA.

2 LDA/QR

In this section, we give a brief review of the LDA/QR algorithm [11, 12]. This algorithm
has two stages. The first stage maximizes the separation between different classes via QR
Decomposition [4]. The second stage addresses the issue of minimizing the within-class
distance, while maintaining low time/space complexity.

Let A € IR™™ bethe datamatrix, where each column a; isavector in d-dimensional space.
Assume A is partitioned into ¢ classes {11, }¢_, , and the size of the ith class |II;| = n;,.

Define between-class, within-class, and total scatter matrices S, .S, and .S; respectively,
asfollows [3]: S, = HH{, S, = H,H., and S, = H,H}, where H, = [\/N1(m1 —
m), - ,v/Ne(m. —m)] € R¥>¢, H, = A~ [myel,--- ,meel] € R™>*", and H, =
A—met € RX" e; = (1,---,1)t € R**Y e = (1,---,1)! € R**L, m; isthe mean of
the ith class, and m isthe global mean. It is easy to check that S; = Sp, + S..

Thefirst stage of LDA/QR aims to solve the following optimization problem,
— t
G =ag Jpax. trace(G* SpG). (1)

Note that this optimization only addresses the issue of maximizing the between-class dis-
tance. The solution can be obtained by solving the eigenvalue problem on S;,. The solution
can aso be obtained through QR Decomposition on the centroid matrix C' [12], where
C = [my,ma,--- ,m,] consists of the ¢ centroids. More specifically, let C = QR be
the QR Decomposition of C, where Q € IR™* has orthonormal columns and R € IR°*¢

'K DA/QR stands for Kernel Discriminant Analysis via QR-decomposition



Algorithm 1. LDA/QR

[* Stagel: */

1. Construct centroid matrix C'

2. Compute QR Decomposition of C asC' = QR, where Q € IRY*¢, R € IR®*¢;
[* Stagell: */

3Y «— H}fQ,

4.7 — H{Q;

5. B « Y''Y; [*Reduced between-class scatter matrix*/

6. T «— Z'Z; [*Reduced total scatter matrix*/

7. Compute the ¢ eigenvectors ¢; of (T + uI.)~! B with decreasing eigenval ues;
8.G — QV,whereV = [¢1, -, d¢).

is upper triangular. Then G = QV/, for any orthogona matrix V', solves the optimiza-
tion problem in Eqg. (1). Note that the choice of orthogonal matrix V' is arbitrary, since
trace(G'S,G) = trace(V'G'S,GV'), for any orthogonal matrix V.

The second stage of LDA/QR refines the first stage by addressing the issue of minimizing
the within-class distance. It incorporates the within-class scatter information by applying a
relaxation scheme on V (relaxing V' from an orthogonal matrix to an arbitrary matrix). In
the second stage of LDA/QR, welook for atransformation matrix G suchthat G = QV/, for
some V. Notethat I isnot required to be orthogonal . The original problem of computing G
is equivalent to computing V. Since GtS,G = V{(Q'S,Q)V, G'S,,G = V1(Q!S,Q)V

and G'S,G = V(Q!'S,Q)V, the original problem of finding optimal G is equivalent to
finding V, with B = Q'S,Q, W = @Q!'S,,Q, and T = Q*S,(Q asthe “reduced” between-
class, within-class and total scatter matrices, respectively. Note that B has much smaller
size than the original scatter matrix S, (similarly for W and 7).

The optimal V' can be computed efficiently using many existing L DA-based methods, since
we are dealing with matrices B, W, and T' of size ¢ by ¢. We can compute the optimal V'
by simply applying regularized LDA; that is, we compute V', by solving asmall eigenvalue
problem on (W + pl.) ‘B or (T + ul.)"'B (note T = B + W), for some positive
constant . [3]. The pseudo-code for this algorithm is given in Algorithm 1. We use the
total scatter instead of the within-class scatter in Lines 4, 6, and 7, mainly for convenience
of presentation of the kernel methods in Section 3 and Section 4.

3 Kernd discriminant analysis via QR-decomposition (KDA/QR)

In this section, the KDA/QR algorithm, a nonlinear extension of LDA/QR through kernel
functions, is presented. Let & be a mapping to the feature space and ®(A) be the data
matrix in the feature space. Then, the centroid matrix C'® in the feature spaceis

n i€l zGH
The global centroid in the feature space can be computed as m® = % >, nymE. To maxi-
mize between-class distance in the feature space, as discussed in Section 2, we perform QR
decomposition on C®,i.e., C® = Q®R®. A key observation isthat R® can be computed
as(C®)C?® = (R®)! R® by applying the Cholesky decomposition on (C®)!C'® [4].

Note that C® = A® M, Where A? = ®(A) = [®(ay)...P(ay)], and the ith column
of M is (0,---,0, nl e L 0,---,0)". Let K be the kernel matrix with K (i,5) =

(®(a;), ®(a J)>- Then
(C*)'C® = M'K M. 3)



Algorithm 2: KDA/QR

[* Stagel: */

1. Construct kernel matrix K;

2. Compute (C®)!C® = M'(KM) asin Eq. (3);

3. Compute R® from the Cholesky Decomposition of (C®)!C®;
[* Stagell: */

Y® — NtM!KM(R®)™

5. 7% E*KM(R®)~!

6. BY® — (Yq))tyé;

7. T® — (Z2%)12°;
8.
9.
1

IN

Compute the c eigenvectors ¢ of (T® + ul.)~'B®, with decreasing eigenvalues;

V¢. [ ¢27;¢?]’
0. G<I><_0<I>(R<I>) lvfi);

With the computed R®, Q¥ = C?(R®)~!. The matrices Y®, Z®, B®, and W? in the
feature space (corresponding to the second stage in LDA/QR) can be computed as follows.
In the feature space, we have HY = C®N, where the i'" column of N is
(0, , /i, -+ 0) — Yi(ny .. )t It follows that Y* = (HP)'Q® =
NYCPIC?(R®)™L = NtMtKM( <I>) Similally, HY = A®E and Z% =
(HE)'Q® = EY(A®)IC®(R?)~L = BY(A®)PATM(R®)-L = E'KM(R®)"!, where
E=1— Leet.

Since S = HP (HF)" and S = HF (H?)!, we have

BY = (@V)'SEQ" = (V) HP(HE)YQP = (v*) ¥,
T = (QU)'SPQY = (@) HP(HE)QF = (2%)'2".
We proceed by computing the c eigenvectors {¢$ }¢_, of (T® + )~ ' B®. Define Ve =
(6%, 0% ... ¢2]. Thefinal transformation matrix can be computed as
Q<I>V<I> C(I)(R{)) 1V<D. (4)

For a given data point z, its projection by G® is (G®)'®(z) =
(VEY((R®)"HHCM) B(z) = (VO)((R®)") M'K,,, where K;, € IR" and
K. (i) = (®(a;), ®(2)).

The pseudo-code for the KDA/QR algorithm is given in Algorithm 2.

3.1 Complexity analysis of KDA/QR

The cost to formulate the kernel matrix in Line 1is O(n2d). The computation of (C*)!C®
inLine 2 takes O(n?), taking advantage of the sparse structure of M. The Cholesky decom-
positionin Line 3 takes O(c?) [4]. Lines4 takes O(c?), as M* K M isaready computed in
Line2. InLine5, the computation of Z® = E'KM(R®)™ = (I — Lee!)KM(R*)™!

KM(R*)™' — L (e((e"!KM)(R*)~1)) inthe given order takes O(nc?), assuming K M
iskept in Line 2. Lines 6, 7, and 8 take O(c?), O(nc?) and O(c3), respectively. Hence,
the total complexity of the kernel LDA/QR algorithm is O(n2d). Omitting the cost for
evaluating the kernel matrix K, which isrequired in al kernel-based algorithms, the total
cost isO(n?). Note that all other general discriminant analysis algorithms scale as O (n?).



4 Approximate KDA/QR (AKDA/QR)

In this section, we present the AKDA/QR algorithm, which is an efficient approximation
of the KDA/QR algorithm from the last section. Note that the bottleneck of KDA/QR isthe
explicit formation of the large kernel matrix K for the computation of (C*)*C? in Line
2 of Algorithm 2. The AKDA/QR algorithm presented in this section avoids the explicit
construction of K, thus reducing the computational cost significantly.

The key to AKDA/QR is the efficient computation of (C®)!C®, where C® =
[m¥,---,m?] and m$ = %quenj ®(a;). AKDA/QR aims to find 2 in the origina

space such that (z7 ) approximates m;?. Mathematically, the optimal =} can be computed
by solving the following optimization problem:

1
in [|®(z;) — — ®(a;)||> forj=1,---,c 5
i, [ ®(e5) — - EXH: (ai)ll j ¢ 5)

To proceed, we only consider Gaussian kernelsfor AKDA/QR, as they are the most widely
used onesin the literature [9]. Furthermore, the optimization problem in (5) can be simpli-
fied by focusing on the Gaussian kernels, as shown in the following lemma.

Lemma4.1. Consider Gaussian kernel function exp(—||z — y||? /o), where o isthe band-
width parameter. The optimization problemin (5) is convex if

2
foreachj =1,---,c¢c andforallie1l;, |\/;(xj —a)|| €1 (6)

Proof. It is easy to check that, for the Gaussian kernel, the optimization problem in (5)
reduces to:

Irfél]r%ld f(xj) for] = 17 , Gy (7)

where f(z) = 3 ;cq, fi(x) and fi(z) = —exp(—|lz — a;||?/o). The Hessian matrix of
fi(@)isH(f;) = 2exp(—|lz — a;]|*/o)(I — 2(z — a;)(z — a;)"). Itiseasy to show that
if H\/E(a: —a;)|] < 1,forall i € II;, then H(f;) is positive semi-definite, that is, f;(x) is

o

convex. Thus, f(z), the sum of convex functionsis aso convex. O

For applications involving high-dimensional data, such as face recognition, o is usually
large (typically ranging from thousands to hundreds of thousands [13]), and the condition
in Lemma 4.1 holds if we restrict our search space to the convex hull of each classin the
original space. Therefore, the global minimum of the optimization problem in (7) can be
found very efficiently using Newton’s or gradient decent methods. A key observation is
that for relatively large o, the centroid of each class in the original space will map very
close to the centroid in the feature space [9], which can serve as the approximate solution
of the optimization problem in (7). Experiments show that choosing = = ni] Zienj a;
produces results close to the one by solving the optimization problem in (7). We thus use
itin al the following experiments.

With the computed =7, for j = 1,... , ¢, the centroid matrix C® can be approximated by
C* = [®(x})...®(z))] (= C%) (8)
and
(C)C® =K, ©)



Algorithm 3: AKDA/QR

[* Stagel: */

1. Computex’ = % Yier,
2. Construct kernel matrix K asin Eq. (9);

3. Compute R® from the Cholesky Decomposition of K

[* Stagell: */

4. Y® — NK(R?)L;

Z<I> - Etf{tc(f%@)fl;

B<I> - (Y@)tfﬂb;

T<I> - (Zé)t2¢;

Compute the ¢ eigenvectors ¢® of (7'® + .uI,)~' B®, with decreasing eigenvalues;
. V@H[Aib7¢gg>7’¢;;{.>},

10. G® — C*(R®)"1VY,

a,forj=1,--- ¢

© NG

PCA LDA/QR GDA KDA/QR AKDA/QR
time | O(n*d) O(ndc) OMm*d+n3) O(n%d) O(ndc)
space | O(nd) O(nc) O(n?) O(n?) O(nc)

Table 1: Comparison of time & space complexities of several dimension reduction algo-
rithms: n isthe size of the data, d isthe dimension, and ¢ is the number of classes.

where K (i, j) = (®(x}), ®(x})) and K € R**°. The Cholesky decomposition of K will

(2

giveus R® by K = (R®)'R®.

It follows that H? = C®N, and Y® = N*K(R®)~'. Similaly, Z* = F'K,.(R®)"",

where N and E are defined asin Section 3, and K. (i, j) = (®(a;), ®(x3)).

The following steps will be the same as the KDA/QR agorithm. The pseudo-code for
AKDA/QR isgivenin Algorithm 3.

4.1 Complexity analysis of AKDA/QR

It takes O(dn) in Line 1. The construction of the matrix K in Line 2 takes O(c?d). The
Cholesky Decomposition in Line 3 takes O(c?) [4]. Lines 4 and 5 take O(c?) and O(ndc)
respectively. It then takes O(c?®) and O(nc?) for matrix multiplications in Lines 6 and 7,
respectively. Line 8 computes the eigen-decomposition of a ¢ by ¢ matrix, hence takes
O(c?) [4]. Thus, the most expensive step in Algorithm 3 isLine 5, which takes O(ndc).

Table 1 lists the time and space complexities of several dimension reduction algorithms. It
isclear from the table that AKDA/QR is more efficient than other kernel based methods.

5 Experimental results

In this section, we evaluate both the KDA/QR and AKDA/QR algorithms. The perfor-
mance is measured by classification accuracy. Note that both KDA/QR and AKDA/QR
have two parameters. o for the kernel function and p for the regularization. Experi-
ments show that choosing o = 100000 and x = 0.15 for KDA/QR, and ¢ = 100000
and ¢ = 0.10 for AKDA/QR produce good overall results. We thus use these values
in al the experiments. 1-Nearest Neighbor (1-NN) method is used as the classifier. We
randomly select p samples of each person from the dataset for training and the rest for
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Figure 1: Comparison of classification accuracy on PIX (left) and AR (right).

testing. We repeat the experiments 20 times and report the average recognition accuracy
of each method. The MATLAB codes for the KDA/QR and AKDA/QR algorithms may be
accessed at http://www.cs.umn.edu/~jieping/Kernel.

Datasets: We use the following three datasets in our study, which are publicly available:
PIX contains 300 face images of 30 persons. The image size of PIX imageis 512 x 512.
We subsample the images down to a size of 100 x 100 = 10000; ORL is a well-known
dataset for face recognition. It contains ten different face images of 40 persons, for atotal
of 400 images. Theimage sizeis92 x 112 = 10304; AR isalarge face image datasets. We
use a subset of AR. This subset contains 1638 face images of 126 persons. Itsimage size
iS768 x 576. We subsample the images down to asize of 60 x 40 = 2400. Each dataset is
normalized to have zero mean and unit variance.

KDA/QR and AKQA/QR vs. LDA/QR: In this experiment, we compare the perfor-
mance of AKDA/QR and KDA/QR with that of several other linear dimension reduction
algorithms including PCA, LDA/QR on two face datasets. We use 100 principal compo-
nents for PCA as it produces good overall results. The results are summarized in Fig. 1,
where the z-axis denotes the number of samples per classin the training set and the y-axis
denotes the classification accuracy. Fig. 1 shows that KDA/QR and AKQA/QR consis-
tently outperform LDA/QR and PCA. The most interesting result lies in the AR dataset,
where AKDA/QR and KDA/QR outperform LDA/QR by alarge margin. It is known that
the images in the AR dataset contain pretty large area of occlusion due to sun glasses and
scarves, which makes linear algorithms such as LDA/QR less effective. Another interest-
ing observation is that the approximate AKQA/QR agorithm is competitive with its exact
version KDA/QR in all cases.

KDA/QR and AKQA/QR vs. GDA: In this experiment, we compare the performance of
AKDA/QR and KDA/QR with Generalized Discriminant Analysis (GDA) [1]. The com-
parison is made on the ORL face dataset, as the result of GDA on ORL is available in
[5]. We also include the results on PCA and LDA/QR. The results are summarized in Ta-
ble 2. The main observation from this experiment isthat both KDA/QR and AKDA/QR are
competitive with GDA, while AKDA/QR is much more efficient than GDA (see Table 1).
Similar to the first experiment, Table 2 shows that KDA/QR and AKDA/QR consistently
outperform the PCA and LDA/QR agorithms in terms of recognition accuracy.

6 Conclusions

In this paper, we first present a general kernel discriminant analysis algorithm, called
KDA/QR. Using Gaussian kernels, we then proposed an approximate algorithm to



PCA | LDA/QR | GDA | KDA/QR | AKDA/QR
0.8611 | 0.8561 | 0.8782 | 0.9132 0.9118
0.8938 | 0.9083 | 0.9270 | 0.9321 0.9300
09320 | 09385 | 0.9535 | 0.9625 0.9615
0.9512 | 0.9444 | 0.9668 | 0.9737 0.9744
0.9633 | 0.9692 | 09750 | 0.9825 0.9815
09713 | 09713 | 0.9938 | 0.9875 0.9875

O ~NO Ol WDT

Table 2: Comparison of classification accuracy on ORL faceimage dataset. p isthe number
of training samples per class. The results on GDA are taken from [5].

KDA/QR, which we call AKDA/QR. Our experimental results show that the accuracy
achieved by the two algorithms is very competitive with GDA, a general kernel discrimi-
nant algorithms, while AKDA/QR is much more efficient. In particular, the computational
complexity of AKDA/QR is linear in the number of the data points in the training set as
well as the number of dimensions and the number of classes.

Acknowledgment Research of J. Ye and R. Janardan is sponsored, in part, by the Army High Per-
formance Computing Research Center under the auspices of the Department of the Army, Army
Research Laboratory cooperative agreement number DAAD19-01-2-0014, the content of which does
not necessarily reflect the position or the policy of the government, and no official endorsement
should be inferred.

References

[1] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural
Computation, 12(10):2385-2404, 2000.

[2] PN. Belhumeour, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisherfaces: Recognition
using class specific linear projection. |EEE TPAMI, 19(7):711-720, 1997.

[3] K. Fukunaga. Introduction to Statistical Pattern Classification. Academic Press, San Diego,
Cadlifornia, USA, 1990.

[4] G.H. Goluband C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, USA, third edition, 1996.

[5] Q. Liu, R. Huang, H. Lu, and S. Ma. Kernel-based optimized feature vectors selection and
discriminant analysis for face recognition. In ICPR Proceedings, pages 362 — 365, 2002.

[6] S. Mika, G. Ratsch, and K.-R. Milller. A mathematical programming approach to the kernel
fisher algorithm. In NIPS Proceedings, pages 591 — 597, 2001.

[7] S. Mika, G. Ratsch, J. Weston, B. Schokopf, and K.-R. Miller. Fisher discriminant analysis
with kernels. In IEEE Neural Networks for Sgnal Processing Workshop, pages 41 — 48, 1999.

[8] S. Mika, A.J. Smola, and B. Scholkopf. Animproved training algorithm for kernel fisher dis-
criminants. In AISTATS Proceedings, pages 98-104, 2001.

[9] B. Schokopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press, 2002.

[10] B. Schokopf, A. Smola, and K. Mdller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10(5):1299-1319, 1998.

[11] J Yeand Q. Li. LDA/QR: An efficient and effective dimension reduction algorithm and its
theoretical foundation. Pattern recognition, pages 851-854, 2004.

[12] J.Ye, Q. Li, H. Xiong, H. Park, R. Janardan, and V. Kumar. IDR/QR: Anincremental dimension
reduction agorithm via QR decomposition. In ACM SSGKDD Proceedings, pages 364—373,
2004.

[13] W. Zheng, L. Zhao, and C. Zou. A modified algorithm for generalized discriminant analysis.
Neural Computation, 16(6):1283-1297, 2004.



