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Abstract

Regularization plays a central role in the analysis of modern data, where
non-regularized fitting is likely to lead to over-fitted models, useless for
both prediction and interpretation. We consider the design of incremen-
tal algorithms which follow paths of regularized solutions, as the regu-
larization varies. These approaches often result in methods which are
both efficient and highly flexible. We suggest a general path-following
algorithm based on second-order approximations, prove that under mild
conditions it remains “very close” to the path of optimal solutions and
illustrate it with examples.

1 Introduction

Given a data sample(xi, yi)n
i=1 (with xi ∈ Rp andyi ∈ R for regression,yi ∈ {±1} for

classification), the generic regularized optimization problem calls for fitting models to the
data while controlling complexity by solving a penalized fitting problem:

β̂(λ) = arg min
β

∑

i

C(yi, β
′xi) + λJ(β)(1)

whereC is a convex loss function andJ is a convex model complexity penalty (typically
taken to be thelq norm ofβ, with q ≥ 1).1

Many commonly used supervised learning methods can be cast in this form, including
regularized 1-norm and 2-norm support vector machines [13, 4], regularized linear and
logistic regression (i.e. Ridge regression, lasso and their logistic equivalents) and more. In
[8] we show that boosting can also be described asapproximateregularized optimization,
with anl1-norm penalty.

Detailed discussion of the considerations in selecting penalty and loss functions for regu-
larized fitting is outside the scope of this paper. In general, there are two main areas we
need to consider in this selection:

1. Statistical considerations:robustness (which affects selection of loss), sparsity (l1-norm
penalty encourages sparse solutions) and identifiability are among the questions we should

1We assume a linear model in (1), but this is much less limiting than it seems, as the model can
be linear in basis expansions of the original predictors, and so our approach covers Kernel methods,
wavelets, boosting and more



keep in mind when selecting our formulation.
2. Computational considerations:we should be able to solve the problems we pose with
the computational resources at our disposal. Kernel methods and boosting are examples
of computational tricks that allow us to solve very high dimensional problems – exactly or
approximately – with a relatively small cost. In this paper we suggest a new computational
approach.

Once we have settled on a loss and penalty, we are still faced with the problem of select-
ing a “good” regularization parameterλ, in terms of prediction performance. A common
approach is to solve (1) for several values ofλ, then use holdout data (or theoretical ap-
proaches, like AIC or SRM) to select a good value. However, if we view the regularized
optimization problem as a family of problems, parameterized by the regularization parame-
terλ, it allows us to define the “path” of optimal solutions{β̂(λ) : 0 ≤ λ ≤ ∞}, which is a
1-dimensional curve throughRp. Path following methods attempt to utilize the mathemat-
ical properties of this curve to devise efficient procedures for “following” it and generating
the full set of regularized solutions with a (relatively) small computational cost.

As it turns out, there is a family of well known and interesting regularized problems for
which efficientexactpath following algorithms can be devised. These include the lasso [3],
1- and 2-norm support vector machines [13, 4] and many others [9]. The main property of
these problems which makes them amenable to such methods is thepiecewise linearityof
the regularized solution path inRp. See [9] for detailed exposition of these properties and
the resulting algorithms.

However, the path following idea can stretch beyond these exact piecewise linear algo-
rithms. The “first order” approach is to use gradient-based approaches. In [8] we have
described boosting as an approximate gradient-based algorithm for followingl1-norm reg-
ularized solution paths. [6] suggest a gradient descent algorithm for finding an optimal so-
lution for a fixed value ofλ and are seemingly unaware that the path they are going through
is of independent interest as it consists of approximate (alas very approximate) solutions
to l1-regularized problems. Gradient-based methods, however, can only follow regularized
paths under strict and non-testable conditions, and theoretical “closeness” results to the
optimal path are extremely difficult to prove for them (see [8] for details).

In this paper, we suggest a general second-order algorithm for following “curved” regu-
larized solution paths (i.e. ones that cannot be followed exactly by piecewise-linear al-
gorithms). It consists of iteratively changing the regularization parameter, while making a
single Newton step at every iteration towards the optimal penalized solution, for the current
value ofλ. We prove that if both the loss and penalty are “nice” (in terms of bounds on
their relevant derivatives in the relevant region), then the algorithm is guaranteed to stay
“very close” to the true optimal path, where “very close” is defined as:

If the change in the regularization parameter at every iteration isε, then
the solution path we generate is guaranteed to be withinO(ε2) from the
true path of penalized optimal solutions

In section 2 we present the algorithm, and we then illustrate it onl1- and l2-regularized
logistic regression in section 3. Section 4 is devoted to a formal statement and proof outline
of our main result. We discuss possible extensions and future work in section 5.

2 Path following algorithm

We assume throughout that the loss functionC is twice differentiable. Assume for now
also that the penaltyJ is twice differentiable (this assumption does not apply to thel1-
norm penalty which is of great interest and we address this point later). The key to our



methodare the normal equations for (1):

∇C(β̂(λ)) + λ∇J(β̂(λ)) = 0(2)

Our algorithm iteratively constructs an approximate solutionβ
(ε)
t by taking “small”

Newton-Raphson steps trying to maintain (2) as the regularization changes. Our main
result in this paper is to show, both empirically and theoretically, that for smallε, the dif-
ference‖β(ε)

t − β̂(λ0 + ε · t)‖ is small, and thus that our method successfully tracks the
path of optimal solutions to (1).

Algorithm 1 gives a formal description of our quadratic tracking method. We start from a
solution to (1) for some fixedλ0 (e.g.β̂(0), the non-regularized solution). At each iteration
we increaseλ by ε and take a single Newton-Raphson step towards the solution to (2) with
the newλ value in step 2(b).

Algorithm 1 Approximate incremental quadratic algorithm for regularized optimization

1. Setβ(ε)
0 = β̂(λ0), sett = 0.

2. While (λt < λmax)

(a) λt+1 = λt + ε

(b) β
(ε)
t+1 =

β
(ε)
t −

[
∇2C(β(ε)

t ) + λt+1∇2J(β(ε)
t )

]−1 [
∇C(β(ε)

t ) + λt+1∇J(β(ε)
t )

]

(c) t = t + 1

2.1 Thel1-norm penalty

Thel1-norm penalty,J(β) = ‖β‖1, is of special interest because of its favorable statistical
properties (e.g. [2]) and its widespread use in popular methods, such as the lasso [10] and
1-norm SVM [13]. However it is not differentiable and so our algorithm does not apply to
l1-penalized problems directly.

To understand how we can generalize Algorithm 1 to this situation, we need to consider the
Karush-Kuhn-Tucker (KKT) conditions for optimality of the optimization problem implied
by (1). It is easy to verify that the normal equations (2) can be replaced by the following
KKT-based condition forl1-norm penalty:

|∇C(β̂(λ))j | < λ ⇒ β̂(λ)j = 0(3)

β̂(λ)j 6= 0 ⇒ |∇C(β̂(λ))j | = λ(4)

these conditions hold for any differentiable loss and tell us that at each point on the path we
have a setA of non-0 coefficients which corresponds to the variables whose current “gen-
eralized correlation”|∇C(β̂(λ))j | is maximal and equal toλ. All variables with smaller
generalized correlation have0 coefficient at the optimal penalized solution for thisλ. Note
that thel1-norm penalty is twice differentiable everywhere except at0. So if we carefully
manage the set of non-0 coefficients according to these KKT conditions, we can still apply
our algorithm in the lower-dimensional subspace spanned by non-0 coefficients only.

Thus we get Algorithm 2, which employs the Newton approach of Algorithm 1 for twice
differentiable penalty, limited to the sub-space of “active” coefficients denoted byA. It
adds to Algorithm 1 updates for the “add variable to active set” and “remove variable from



active set” events, when a variable becomes “highly correlated” as defined in (4) and when
a coefficient hits0 , respectively.2

Algorithm 2 Approximate incremental quadratic algorithm for regularized optimization
with lasso penalty

1. Setβ(ε)
0 = β̂(λ0), sett = 0, setA = {j : β̂(λ0)j 6= 0}.

2. While (λt < λmax)

(a) λt+1 = λt + ε

(b)

β
(ε)
t+1 = β

(ε)
t −

[
∇2C(β(ε)

t )A
]−1

·
[
∇C(β(ε)

t )A + λt+1sgn(β(ε)t )A
]

(c) A = A ∪ {j /∈ A : ∇C(β(ε)
t+1)j > λt+1}

(d) A = A− {j ∈ A : |β(ε)
t+1,j | < δ}

(e) t = t + 1

2.2 Computational considerations

For a fixedλ0 andλmax, Algorithms 1 and 2 takeO(1/ε) steps. At each iteration they need
to calculate the Hessians of both the loss and the penalty at a typical computational cost of
O(n · p2); invert the resultingp × p matrix at a cost ofO(p3); and perform the gradient
calculation and multiplication, which areo(n · p2) and so do not affect the complexity
calculation. Since we implicitly assume throughout thatn ≥ p, we get overall complexity
of O(n · p2/ε). The choice ofε represents a tradeoff between computational complexity
and accuracy (in section 4 we present theoretical results on the relationship betweenε and
the accuracy of the path approximation we get). In practice, our algorithm is practical for
problems with up to several hundred predictors and several thousand observations. See the
example in section 3.

It is interesting to compare this calculation to the obvious alternative, which is to solve
O(1/ε) regularized problems (1) separately, using a Newton-Raphson approach, resulting
in the same complexity (assuming the number of Newton-Raphson iterations for finding
each solution is bounded). There are several reasons why our approach is preferable:

• The number of iterations until convergence of Newton-Raphson may be large even
if it does converge. Our algorithm guarantees we stay very close to the optimal
solution path with a single Newton step at each new value ofλ.

• Empirically we observe that in some cases our algorithm is able to follow the path
while direct solution for some values ofλ fails to converge. We assume this is
related to various numeric properties of the specific problems being solved.

• For the interesting case ofl1-norm penalty and a “curved” loss function (like logis-
tic log-likelihood), there is no direct Newton-Raphson algorithm. Re-formulating
the problem into differentiable form requires doubling the dimensionality. Using
our Algorithm 2, we can still utilize the same Newton method, with significant
computational savings when many coefficients are0 and we work in a lower-
dimensional subspace.

2When a coefficient hits0 it not only hits a non-differentiability point in the penalty, it also
ceases to be maximally correlated as defined in (4). A detailed proof of this fact and the rest of the
“accounting” approach can be found in [9]



Onthe flip side, our results in section 4 below indicate that to guarantee successful tracking
we requireε to be small, meaning the number of steps we do in the algorithm may be
significantly larger than the number of distinct problems we would typically solve to select
λ using a non-path approach.

2.3 Connection to path following methods from numerical analysis

There is extensive literature on path-following methods for solution paths of general para-
metric problems. A good survey is given in [1]. In this context, our method can be described
as a “predictor-corrector” method with a redundant first order predictor step. That is, the
corrector step starts from the previous approximate solution. These methods are recognized
as attractive options when the functions defining the path (in our case, the combination of
loss and penalty) are “smooth” and “far from linear”. These conditions for efficacy of our
approach are reflected in the regularity conditions for the closeness result in Section 4.

3 Example: l2- and l1-penalized logistic regression

Regularized logistic regression has been successfully used as a classification and proba-
bility estimation approach [11, 12]. We first illustrate applying our quadratic method to
this regularized problem using a small subset of the “spam” data-set, available from the
UCI repository (http://www.ics.uci.edu/˜mlearn/MLRepository.html)
which allows us to present some detailed diagnostics. Next, we apply it to the full “spam”
data-set, to demonstrate its time complexity on bigger problems.

We first choose five variables and300 observations and track the solution paths to two
regularized logistic regression problems with thel2-norm and thel1-norm penalties:

β̂(λ) = arg min
β

log(1 + exp{−yiβ
′xi}) + λ‖β‖22(5)

β̂(λ) = arg min
β

log(1 + exp{−yiβ
′xi}) + λ‖β‖1(6)

Figure 1 shows the solution pathsβ(ε)(t) generated by running Algorithms 1 and 2 on this
data usingε = 0.02 and starting atλ = 0, i.e. from the non-regularized logistic regression
solution. The interesting graphs for our purpose are the ones on the right. They represent
the “optimality gap”:

et =
∇C(β(ε)

t )

∇J(β(ε)
t )

+ ε · t

wherethe division is done componentwise (and so the five curves in each plot correspond
to the five variables we are using). Note that the optimal solutionβ̂(tε) is uniquely defined
by the fact that (2) holds and therefore the “optimality gap” is equal to zero componentwise
at β̂(tε). By convexity and regularity of the loss and the penalty, there is a correspondence
between small values ofe and small distance‖β(ε)(t)− β̂(tε)‖. In our example we observe
that the components ofe seem to be bounded in a small region around0 for both paths (note
the small scale of they axis in both plots — the maximal error is under10−3). We conclude
that on this simple example our method tracks the optimal solution paths well, both for the
l1- andl2-regularized problems. The plots on the left show the actual coefficient paths —
the curve inR5 is shown as five coefficient traces inR, each corresponding to one variable,
with the non-regularized solution (identical for both problems) on the extreme left.

Next, we run our algorithm on the full “spam” data-set, containingp = 57 predic-
tors andn = 4601 observations. For both thel1- and l2-penalized paths we used
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Figure1: Solution paths (left) and optimality criterion (right) forl1 penalized logistic re-
gression (top) andl2 penalized logistic regression (bottom). These result from running
Algorithms 2 and 1, respectively, usingε = 0.02 and starting from the non-regularized
logistic regression solution (i.e.λ = 0)

λ0 = 0, λmax = 50, ε = 0.02, and the whole path was generated in under5 minutes
using a Matlab implementation on an IBM T-30 Laptop. Like in the small scale example,
the “optimality criterion” was uniformly small throughout the two paths, with none of its
57 components exceeding10−3 at any point.

4 Theoretical closeness result

In this section we prove that our algorithm can track the path of true solutions to (1).
We show that under regularity conditions on the loss and penalty (which hold for all the
candidates we have examined), if we run Algorithm 1 with a specific step sizeε, then we
remain withinO(ε2) of the true path of optimal regularized solutions.

Theorem 1 Assumeλ0 > 0, then forε small enough and under regularity conditions on
the derivatives ofC andJ ,

∀0 < c < λmax − λ0 , ‖β(ε)(c/ε)− β̂(λ0 + c)‖ = O(ε2)

So there is auniformboundO(ε2) on the error whichdoes notdepend onc.

Proof We give the details of the proof in Appendix A of [7]. Here we give a brief review
of the main steps.

Similar to section 3 we define the “optimality gap”:∣∣∣∣∣(
∇C(β(ε)

t )

∇J(β(ε)
t )

)j + λt

∣∣∣∣∣ = etj(7)

Also define a “regularity constant”M , which depends onλ0 and the first, second and third
derivatives of the loss and penalty.

The proof is presented as a succession of lemmas:



Lemma 2 Letu1 = M · p · ε2, ut = M(ut−1 +
√

p · ε)2, then:‖et‖2 ≤ ut

This lemma gives a recursive expression bounding the error in the optimality gap (7) as the
algorithm proceeds. The proof is based on separate Taylor expansions of the numerator and
denominator of the ratio∇C

∇J in the optimality gap and some tedious algebra.

Lemma 3 If
√

pεM ≤ 1/4 thenut ↗ 1
2M −√p · ε−

√
1−4

√
p·εM

2M = O(ε2) , ∀t

This lemma shows that the recursive bound translates to a uniformO(ε2) bound, if ε is
small enough. The proof consists of analytically finding the fixed point of the increasing
seriesut.

Lemma 4 Under regularity conditions on the penalty and loss functions in the neighbor-
hood of the solutions to (1), theO(ε2) uniform bound of lemma 3 translates to anO(ε2)
uniform bound on‖β(ε)(c/ε)− β̂(λ0 + c)‖

Finally, this lemma translates the optimality gap bound to an actual closeness result. This
is proven via a Lipschitz argument.

4.1 Required regularity conditions

Regularity in the loss and the penalty is required in the definition of the regularity constant
M and in the translation of theO(ε2) bound on the “optimality gap” into one on the distance
from the path in lemma 4. The exact derivation of the regularity conditions is highly tech-
nical and lengthy. They require us to bound the norm of third derivative “hyper-matrices”
for the loss and the penalty as well as the norms of various functions of the gradients and
Hessians of both (the boundedness is required only in the neighborhood of the optimal path
where our approximate path can venture, obviously). We also need to haveλ0 > 0 and
λmax < ∞. Refer to Appendix A of [7] for details. Assuming thatλ0 > 0 andλmax < ∞
these conditions hold for every interesting example we have encountered, including:

• Ridge regression and the lasso (that is,l2- andl1- regularized squared error loss).

• l1- andl2-penalized logistic regression. Also Poisson regression and other expo-
nential family models.

• l1- andl2-penalized exponential loss.

Note that in our practical examples above we have started fromλ0 = 0 and our method still
worked well. We observe in figure 1 that the tracking algorithm indeed suffers the biggest
inaccuracy for the small values ofλ, but manages to “self correct” asλ increases.

5 Extensions

We have described our method in the context of linear models for supervised learning.
There are several natural extensions and enhancements to consider.

Basis expansions and Kernel methods

Our approach obviously applies, as is, to models that are linear in basis expansions of the
original variables (like wavelets or kernel methods) as long asp < n is preserved. However,
the method can easily be applied to high (including infinite) dimensional kernel versions
of regularized models where RKHS theory applies. We know that the solution path is fully
within the span of the representer functions, that is the columns of the Kernel matrix. With



akernel matrixK with columnsk1, ..., kn and the standardl2-norm penalty, the regularized
problem becomes:

α̂(λ) = arg min
α

∑

i

C(yi, α
′ki) + λα′Kα

so the penalty now also contains the Kernel matrix, but this poses no complications in using
Algorithm 1. The only consideration we need to keep in mind is the computational one,
as our complexity isO(n3/ε). So our method is fully applicable and practical for kernel
methods, as long as the number of observations, and the resulting kernel matrix, are not too
large (up to several hundreds).

Unsupervised learning

There is no reason to limit the applicability of this approach to supervised learning. Thus,
for example, adaptive density estimation using negative log-likelihood as a loss can be
regularized and the solution path be tracked using our algorithm.

Computational tricks

The computational complexity of our algorithm limits its applicability to large problems.
To improve its scalability we primarily need to reduce the effort in the Hessian calculation
and inversion. The obvious suggestion here would be to keep the Hessian part of step 2(b)
in Algorithm 1 fixed for many iterations and change the gradient part only, then update
the Hessian occasionally. The clear disadvantage would be that the “closeness” guarantees
would no longer hold. We have not tried this in practice but believe it is worth pursuing.
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