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Abstract

The computation of classical higher-order statistics such as higher-order
moments or spectra is difficult for images due to the huge number of
terms to be estimated and interpreted. We propose an alternative ap-
proach in which multiplicative pixel interactions are described by a se-
ries of Wiener functionals. Since the functionals are estimated implicitly
via polynomial kernels, the combinatorial explosion associated with the
classical higher-order statistics is avoided. First results show that image
structures such as lines or corners can be predicted correctly, and that
pixel interactions up to the order of five play an important role in natural
images.

Most of the interesting structure in a natural image is characterized by its higher-order
statistics. Arbitrarily oriented lines and edges, for instance, cannot be described by the
usual pairwise statistics such as the power spectrum or the autocorrelation function: From
knowing the intensity of one point on a line alone, we cannot predict its neighbouring
intensities. This would require knowledge of a second point on the line, i.e., we have
to consider some third-order statistics which describe the interactions between triplets of
points. Analogously, the prediction of a corner neighbourhood needs at least fourth-order
statistics, and so on.

In terms of Fourier analysis, higher-order image structures such as edges or corners are
described by phase alignments, i.e. phase correlations between several Fourier components
of the image. Classically, harmonic phase interactions are measured by higher-order spectra
[4]. Unfortunately, the estimation of these spectra for high-dimensional signals such as
images involves the estimation and interpretation of a huge number of terms. For instance, a
sixth-order spectrum of a 16×16 sized image contains roughly 1012 coefficients, about 1010

of which would have to be estimated independently if all symmetries in the spectrum are
considered. First attempts at estimating the higher-order structure of natural images were
therefore restricted to global measures such as skewness or kurtosis [8], or to submanifolds
of fourth-order spectra [9].

Here, we propose an alternative approach that models the interactions of image points
in a series of Wiener functionals. A Wiener functional of order n captures those image
components that can be predicted from the multiplicative interaction of n image points. In
contrast to higher-order spectra or moments, the estimation of a Wiener model does not
require the estimation of an excessive number of terms since it can be computed implicitly



via polynomial kernels. This allows us to decompose an image into components that are
characterized by interactions of a given order.

In the next section, we introduce the Wiener expansion and discuss its capability of model-
ing higher-order pixel interactions. The implicit estimation method is described in Sect. 2,
followed by some examples of use in Sect. 3. We conclude in Sect. 4 by briefly discussing
the results and possible improvements.

1 Modeling pixel interactions with Wiener functionals

For our analysis, we adopt a prediction framework: Given a d × d neighbourhood of an
image pixel, we want to predict its gray value from the gray values of the neighbours. We
are particularly interested to which extent interactions of different orders contribute to the
overall prediction. Our basic assumption is that the dependency of the central pixel value
y on its neighbours xi, i = 1, . . . ,m = d2 − 1 can be modeled as a series

y = H0[x] + H1[x] + H2[x] + · · · + Hn[x] + · · · (1)

of discrete Volterra functionals

H0[x] = h0 = const. and Hn[x] =
∑m

i1=1
· · ·

∑m

in=1
h

(n)
i1...in

xi1 . . . xin
. (2)

Here, we have stacked the grayvalues of the neighbourhood into the vector x =
(x1, . . . , xm)> ∈ R

m. The discrete nth-order Volterra functional is, accordingly, a linear
combination of all ordered nth-order monomials of the elements of x with mn coefficients
h

(n)
i1...in

. Volterra functionals provide a controlled way of introducing multiplicative inter-
actions of image points since a functional of order n contains all products of the input of
order n. In terms of higher-order statistics, this means that we can control the order of the
statistics used since an nth-order Volterra series leads to dependencies between maximally
n + 1 pixels.

Unfortunately, Volterra functionals are not orthogonal to each other, i.e., depending on the
input distribution, a functional of order n generally leads to additional lower-order interac-
tions. As a result, the output of the functional will contain components that are proportional
to that of some lower-order monomials. For instance, the output of a second-order Volterra
functional for Gaussian input generally has a mean different from zero [5]. If one wants
to estimate the zeroeth-order component of an image (i.e., the constant component created
without pixel interactions) the constant component created by the second-order interactions
needs to be subtracted. For general Volterra series, this correction can be achieved by de-
composing it into a new series y = G0[x] + G1[x] + · · · + Gn[x] + · · · of functionals
Gn[x] that are uncorrelated, i.e., orthogonal with respect to the input. The resulting Wiener
functionals1 Gn[x] are linear combinations of Volterra functionals up to order n. They
are computed from the original Volterra series by a procedure akin to Gram-Schmidt or-
thogonalization [5]. It can be shown that any Wiener expansion of finite degree minimizes
the mean squared error between the true system output and its Volterra series model [5].
The orthogonality condition ensures that a Wiener functional of order n captures only the
component of the image created by the multiplicative interaction of n pixels. In contrast to
general Volterra functionals, a Wiener functional is orthogonal to all monomials of lower
order [5].

So far, we have not gained anything compared to classical estimation of higher-order mo-
ments or spectra: an nth-order Volterra functional contains the same number of terms as

1Strictly speaking, the term Wiener functional is reserved for orthogonal Volterra functionals with
respect to Gaussian input. Here, the term will be used for orthogonalized Volterra functionals with
arbitrary input distributions.



the corresponding n + 1-order spectrum, and a Wiener functional of the same order has an
even higher number of coefficients as it consists also of lower-order Volterra functionals.
In the next section, we will introduce an implicit representation of the Wiener series using
polynomial kernels which allows for an efficient computation of the Wiener functionals.

2 Estimating Wiener series by regression in RKHS

Volterra series as linear functionals in RKHS. The nth-order Volterra functional is
a weighted sum of all nth-order monomials of the input vector x. We can interpret the
evaluation of this functional for a given input x as a map φn defined for n = 0, 1, 2, . . . as

φ0(x) = 1 and φn(x) = (xn
1 , xn−1

1 x2, . . . , x1x
n−1
2 , xn

2 , . . . , xn
m) (3)

such that φn maps the input x ∈ R
m into a vector φn(x) ∈ Fn = R

mn

containing all mn

ordered monomials of degree n. Using φn, we can write the nth-order Volterra functional
in Eq. (2) as a scalar product in Fn,

Hn[x] = η>

n φn(x), (4)

with the coefficients stacked into the vector ηn = (h
(n)
1,1,..1, h

(n)
1,2,..1, h

(n)
1,3,..1, . . . )

> ∈ Fn.
The same idea can be applied to the entire pth-order Volterra series. By stacking the maps
φn into a single map φ(p)(x) = (φ0(x), φ1(x), . . . , φp(x))>, one obtains a mapping from

R
m into F

(p) = R×R
m ×R

m2

× . . . Rmp

= R
M with dimensionality M = 1−mp+1

1−m
. The

entire pth-order Volterra series can be written as a scalar product in F
(p)

∑p

n=0
Hn[x] = (η(p))>φ(p)(x) (5)

with η(p) ∈ F
(p). Below, we will show how we can express η(p) as an expansion in terms

of the training points. This will dramatically reduce the number of parameters we have to
estimate.

This procedure works because the space Fn of nth-order monomials has a very special
property: it has the structure of a reproducing kernel Hilbert space (RKHS). As a conse-
quence, the dot product in Fn can be computed by evaluating a positive definite kernel
function kn(x1,x2). For monomials, one can easily show that (e.g., [6])

φn(x1)
>φn(x2) = (x>

1 x2)
n =: kn(x1,x2). (6)

Since F
(p) is generated as a direct sum of the single spaces Fn, the associated scalar product

is simply the sum of the scalar products in the Fn:

φ(p)(x1)
>φ(p)(x2) =

∑p

n=0
(x>

1 x2)
n = k(p)(x1,x2). (7)

Thus, we have shown that the discretized Volterra series can be expressed as a linear func-
tional in a RKHS2.

Linear regression in RKHS. For our prediction problem (1), the RKHS property of the
Volterra series leads to an efficient solution which is in part due to the so called repre-
senter theorem (e.g., [6]). It states the following: suppose we are given N observations

2A similar approach has been taken by [1] using the inhomogeneous polynomial kernel
k

(p)
inh(x1,x2) = (1 + x

>

1 x2)
p. This kernel implies a map φinh into the same space of monomi-

als, but it weights the degrees of the monomials differently as can be seen by applying the binomial
theorem.



(x1, y1), . . . , (xN , yN ) of the function (1) and an arbitrary cost function c, Ω is a nonde-
creasing function on R>0 and ‖.‖F is the norm of the RKHS associated with the kernel k.
If we minimize an objective function

c((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) + Ω(‖f‖F), (8)

over all functions in the RKHS, then an optimal solution3 can be expressed as

f(x) =
∑N

j=1
ajk(x,xj), aj ∈ R. (9)

In other words, although we optimized over the entire RKHS including functions which
are defined for arbitrary input points, it turns out that we can always express the solution
in terms of the observations xj only. Hence the optimization problem over the extremely
large number of coefficients η(p) in Eq. (5) is transformed into one over N variables aj .

Let us consider the special case where the cost function is the mean squared error,
c((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) = 1

N

∑N

j=1(f(xj) − yj)
2, and the regularizer

Ω is zero4. The solution for a = (a1, . . . , aN ) is readily computed by setting the derivative
of (8) with respect to the vector a equal to zero; it takes the form a = K−1y with the Gram
matrix defined as Kij = k(xi,xj), hence5

y = f(x) = a>z(x) = y>K−1z(x), (10)

where z(x) = (k(x,x1), k(x,x2), . . . k(x,xN ))> ∈ R
N .

Implicit Wiener series estimation. As we stated above, the pth-degree Wiener expan-
sion is the pth-order Volterra series that minimizes the squared error. This can be put into
the regression framework: since any finite Volterra series can be represented as a linear
functional in the corresponding RKHS, we can find the pth-order Volterra series that min-
imizes the squared error by linear regression. This, by definition, must be the pth-degree
Wiener series since no other Volterra series has this property6. From Eqn. (10), we obtain
the following expressions for the implicit Wiener series

G0[x] =
1

N
y>1,

∑p

n=0
Gn[x] =

∑p

n=0
Hn[x] = y>K−1

p z(p)(x) (11)

where the Gram matrix Kp and the coefficient vector z(p)(x) are computed using the kernel
from Eq. (7) and 1 = (1, 1, . . . )> ∈ R

N . Note that the Wiener series is represented only
implicitly since we are using the RKHS representation as a sum of scalar products with the
training points. Thus, we can avoid the “curse of dimensionality”, i.e., there is no need to
compute the possibly large number of coefficients explicitly.

The explicit Volterra and Wiener expansions can be recovered from Eq. (11) by collecting
all terms containing monomials of the desired order and summing them up. The individual
nth-order Volterra functionals in a Wiener series of degree p > 0 are given implicitly by

Hn[x] = y>K−1
p zn(x) (12)

with zn(x) = ((x>
1 x)n, (x>

2 x)n, . . . , (x>

Nx)n)>. For p = 0 the only term is the
constant zero-order Volterra functional H0[x] = G0[x]. The coefficient vector ηn =

(h
(n)
1,1,...1, h

(n)
1,2,...1, h

(n)
1,3,...1, . . . )

> of the explicit Volterra functional is obtained as

ηn = Φ>

n K−1
p y (13)

3for conditions on uniqueness of the solution, see [6]
4Note that this is different from the regularized approach used by [1]. If Ω is not zero, the resulting

Volterra series are different from the Wiener series since they are not orthogonal with respect to the
input.

5If K is not invertible, K−1 denotes the pseudo-inverse of K.
6assuming symmetrized Volterra kernels which can be obtained from any Volterra expanson.



using the design matrix Φn = (φn(x1)
>, φn(x1)

>, . . . , φn(x1)
>)>. The individual

Wiener functionals can only be recovered by applying the regression procedure twice. If
we are interested in the nth-degree Wiener functional, we have to compute the solution
for the kernels k(n)(x1,x2) and k(n−1)(x1,x2). The Wiener functional for n > 0 is then
obtained from the difference of the two results as

Gn[x] =
∑n

i=0
Gi[x] −

∑n−1

i=0
Gi[x] = y>

[

K−1
n z(n)(x) − K−1

n−1 z(n−1)(x)
]

. (14)

The corresponding ith-order Volterra functionals of the nth-degree Wiener functional are
computed analogously to Eqns. (12) and (13) [3].

Orthogonality. The resulting Wiener functionals must fulfill the orthogonality condition
which in its strictest form states that a pth-degree Wiener functional must be orthogonal to
all monomials in the input of lower order. Formally, we will prove the following

Theorem 1 The functionals obtained from Eq. (14) fulfill the orthogonality condition

E [m(x)Gp[x]] = 0 (15)

where E denotes the expectation over the input distribution and m(x) an arbitrary ith-
order monomial with i < p.

We will show that this a consequence of the least squares fit of any linear expansion in a set
of basis functions of the form y =

∑M

j=1 γjϕj(x). In the case of the Wiener and Volterra
expansions, the basis functions ϕj(x) are monomials of the components of x.

We denote the error of the expansion as e(x) = y −
∑M

j=1 γjϕj(xi). The minimum of the
expected quadratic loss L with respect to the expansion coefficient γk is given by

∂L

∂γk

=
∂

∂γk

E‖e(x)‖2 = −2E [ϕk(x)e(x)] = 0. (16)

This means that, for an expansion in a set of basis functions minimizing the squared error,
the error is orthogonal to all basis functions used in the expansion.

Now let us assume we know the Wiener series expansion (which minimizes the mean
squared error) of a system up to degree p − 1. The approximation error is given by the
sum of the higher-order Wiener functionals e(x) =

∑

∞

n=p Gn[x], so Gp[x] is part of the
error. As a consequence of the linearity of the expectation, Eq. (16) implies

∑∞

n=p
E [ϕk(x)Gn[x]] = 0 and

∑∞

n=p+1
E [ϕk(x)Gn[x]] = 0 (17)

for any φk of order less than p. The difference of both equations yields E [ϕk(x)Gp[x]] =
0, so that Gp[x] must be orthogonal to any of the lower order basis functions, namely to all
monomials with order smaller than p. ¤

3 Experiments

Toy examples. In our first experiment, we check whether our intuitions about higher-order
statistics described in the introduction are captured by the proposed method. In particular,
we expect that arbitrarily oriented lines can only be predicted using third-order statistics.
As a consequence, we should need at least a second-order Wiener functional to predict lines
correctly.

Our first test image (size 80 × 110, upper row in Fig. 1) contains only lines of varying
orientations. Choosing a 5 × 5 neighbourhood, we predicted the central pixel using (11).
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Figure 1: Higher-order components of toy images. The image components of different orders are
created by the corresponding Wiener functionals. They are added up to obtain the different orders
of reconstruction. Note that the constant 0-order component and reconstruction are identical. The
reconstruction error (mse) is given as the mean squared error between the true grey values of the
image and the reconstruction. Although the linear first-order model seems to reconstruct the lines, this
is actually not true since the linear model just smoothes over the image (note its large reconstruction
error). A correct prediction is only obtained by adding a second-order component to the model. The
third-order component is only significant at crossings, corners and line endings.

Models of orders 0 . . . 3 were learned from the image by extracting the maximal training
set of 76×106 patches of size 5×57. The corresponding image components of order 0 to 3
were computed according to (14). Note the different components generated by the Wiener
functionals can also be negative. In Fig. 1, they are scaled to the gray values [0..255]. The
behaviour of the models conforms to our intuition: the linear model cannot capture the line
structure of the image thus leading to a large reconstruction error which drops to nearly
zero when a second-order model is used. The additional small correction achieved by the
third-order model is mainly due to discretization effects.

Similar to lines, we expect that we need at least a third-order model to predict crossings
or corners correctly. This is confirmed by the second and third test image shown in the
corresponding row in Fig. 1. Note that the third-order component is only significant at
crossings, corners and line endings. The fourth- and fifth-order terms (not shown) have
only negligible contributions. The fact that the reconstruction error does not drop to zero
for the third image is caused by the line endings which cannot be predicted to a higher
accuracy than one pixel.

Application to natural images. Are there further predictable structures in natural images
that are not due to lines, crossings or corners? This can be investigated by applying our
method to a set of natural images (an example of size 80 × 110 is depicted in Fig. 2). Our

7In contrast to the usual setting in machine learning, training and test set are identical in our
case since we are not interested in generalization to other images, but in analyzing the higher-order
components of the image at hand.
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Figure 2: Higher-order components and reconstructions of a photograph. Interactions up to the fifth
order play an important role. Note that significant components become sparser with increasing model
order.

results on a set of 10 natural images of size 50× 70 show an an approximately exponential
decay of the reconstruction error when more and more higher-order terms are added to
the reconstruction (Fig. 3). Interestingly, terms up to order 5 still play a significant role,
although the image regions with a significant component become sparser with increasing
model order (see Fig. 2). Note that the nonlinear terms reduce the reconstruction error to
almost 0. This suggests a high degree of higher-order redundancy in natural images that
cannot be exploited by the usual linear prediction models.

4 Conclusion

The implicit estimation of Wiener functionals via polynomial kernels opens up new pos-
sibilities for the estimation of higher-order image statistics. Compared to the classical
methods such as higher-order spectra, moments or cumulants, our approach avoids the
combinatorial explosion caused by the exponential increase of the number of terms to be
estimated and interpreted. When put into a predictive framework, multiplicative pixel inter-
actions of different orders are easily visualized and conform to the intuitive notions about
image structures such as edges, lines, crossings or corners.

There is no one-to-one mapping between the classical higher-order statistics and multi-
plicative pixel interactions. Any nonlinear Wiener functional, for instance, creates infinitely
many correlations or cumulants of higher order, and often also of lower order. On the other
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Figure 3: Mean square reconstruction error of
models of different order for a set of 10 natural
images.

hand, a Wiener functional of order n produces only harmonic phase interactions up to order
n+1, but sometimes also of lower orders. Thus, when one analyzes a classical statistic of a
given order, one often cannot determine by which order of pixel interaction it was created.
In contrast, our method is able to isolate image components that are created by a single
order of interaction.

Although of preliminary nature, our results on natural images suggest an important role of
statistics up to the fifth order. Most of the currently used low-level feature detectors such
as edge or corner detectors maximally use third-order interactions. The investigation of
fourth- or higher-order features is a field that might lead to new insights into the nature and
role of higher-order image structures.

As often observed in the literature (e.g. [2][7]), our results seem to confirm that a large
proportion of the redundancy in natural images is contained in the higher-order pixel in-
teractions. Before any further conclusions can be drawn, however, our study needs to be
extended in several directions: 1. A representative image database has to be analyzed. The
images must be carefully calibrated since nonlinear statistics can be highly calibration-
sensitive. In addition, the contribution of image noise has to be investigated. 2. Currently,
only images up to 9000 pixels can be analyzed due to the matrix inversion required by
Eq. 11. To accomodate for larger images, our method has to be reformulated in an iterative
algorithm. 3. So far, we only considered 5× 5-patches. To systematically investigate patch
size effects, the analysis has to be conducted in a multi-scale framework.
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