
Optimal information decoding from neuronal
populations with specific stimulus selectivity

Marcelo A. Montemurro
The University of Manchester

Faculty of Life Sciences
Moffat Building

PO Box 88, Manchester M60 1QD, UK
m.montemurro@manchester.ac.uk

Stefano Panzeri ∗
The University of Manchester

Faculty of Life Sciences
Moffat Building

PO Box 88, Manchester M60 1QD, UK
s.panzeri@manchester.ac.uk

Abstract

A typical neuron in visual cortex receives most inputs from other cortical
neurons with a roughly similar stimulus preference. Does this arrange-
ment of inputs allow efficient readout of sensory information by the tar-
get cortical neuron? We address this issue by using simple modelling of
neuronal population activity and information theoretic tools. We find that
efficient synaptic information transmission requires that the tuning curve
of the afferent neurons is approximately as wide as the spread of stim-
ulus preferences of the afferent neurons reaching the target neuron. By
meta analysis of neurophysiological data we found that this is the case
for cortico-cortical inputs to neurons in visual cortex. We suggest that
the organization of V1 cortico-cortical synaptic inputs allows optimal in-
formation transmission.

1 Introduction

A typical neuron in visual cortex receives most of its inputs from other visual cortical neu-
rons. The majority of cortico-cortical inputs arise from afferent cortical neurons with a
preference to stimuli which is similar to that of the target neuron [1, 2, 3]. For exam-
ple, orientation selective neurons in superficial layers in ferret visual cortex receive more
than 50% of their cortico-cortical excitatory inputs from neurons with orientation prefer-
ence which is less than 30o apart. However, this input structure is rather broad in terms
of stimulus-specificity: cortico-cortical connections between neurons tuned to dissimilar
stimulus orientation also exist [4]. The structure and spread of the stimulus specificity of
cortico-cortical connections has received a lot of attention because of its importance for
understanding the mechanisms of generation of orientation tuning (see [4] for a review).
However, little is still known on whether this structure of inputs allows efficient transmis-
sion of sensory information across cortico-cortical synapses.

It is likely that efficiency of information transmission across cortico-cortical synapses also
depends on the width of tuning curves of the afferent cortical neurons to stimuli. In fact,
theoretical work on population coding has shown that the width of the tuning curves has

∗Corresponding author



an important influence on the quality and the nature of the information encoding in cortical
populations [5, 6, 7, 8]. Another factor that may influence the efficiency of cortico-cortical
synaptic information transmission is the biophysical capability of the target neuron. To
conserve all information during synaptic transmission, the target neuron must conserve the
‘label’ of the spikes arriving from multiple input neurons at different places on its dendritic
tree [9]. Because of biophysical limitations, a target neuron that e.g. can only sum inputs
at the soma may lose a large part of the information present in the afferent activity. The
optimal arrangement of cortico-cortical synapses may also depend on the capability of
postsynaptic neurons in processing separately spikes from different neurons.

In this paper, we address the problem of whether cortico-cortical synaptic systems encode
information efficiently. We introduce a simple model of neuronal information processing
that takes into account both the selective distribution of stimulus preferences typical of
cortico-cortical connections and the potential biophysical limitations of cortical neurons.
We use this model and information theoretic tools to investigate whether there is an opti-
mal trade-off between the spread of distribution of stimulus preference across the afferent
neurons and the tuning width of the afferent neurons itself. We find that efficient synaptic
information transmission requires that the tuning curve of the afferent neurons is approx-
imately as wide as the spread of stimulus preferences of the afferent fibres reaching the
target neuron. By reviewing anatomical and physiological data, we argue that this optimal
trade-off is approximately reached in visual cortex. These results suggest that neurons in
visual cortex are wired to decode optimally information from a stimulus-specific distribu-
tion of synaptic inputs.

2 Model of the activity of the afferent neuronal population

We consider a simple model for the activity of the afferent neuronal population based on
the known tuning properties and spatial and synaptic organisation of sensory areas.

2.1 Stimulus tuning of individual afferent neurons

We assume that the the population is made of a large number N of neurons (for a real
cortical neuron, the number N of afferents is in the order of few thousands [10]). The
response of each neuron rk(k = 1, · · · , N) is quantified as the number of spikes fired in
a salient post-stimulus time window of a length τ . Thus, the overall neuronal population
response is represented as a spike count vector r = (r1, · · · , rN ).

We assume that the neurons are tuned to a small number D of relevant stimulus parameters
[11, 12], such as e.g. orientation, speed or direction of motion of a visual object. The
stimulus variable will thus be described as a vector s = (s1, . . . , sD) of dimension D. The
number of stimulus features that are encoded by the neuron will be left as a free parameter
to be varied within the range 1-5 for two reasons. First, although there is evidence that the
number of stimulus features encoded by a single neuron is limited [11, 12], more research
is still needed to determine exactly how many stimulus parameters are encoded in different
areas. Second, a previous related study [8] has shown that, when considering large neuronal
populations with a uniform distribution of stimulus preferences (such as an hypercolumn
in V1 containing all stimulus orientations) the tuning width of individual neurons which is
optimal for population coding depends crucially on the number of stimulus features being
encoded. Thus, it is interesting to investigate how the optimal arrangement of cortico-
cortical synaptic systems depends on the number of stimulus features being encoded.

The neuronal tuning function of the k − th neuron (k = 1, · · · , N ), which quantifies the
mean spike count of the k− th neuron to the presented stimulus, is modelled as a Gaussian
distribution, characterised by the following parameters: preferred stimulus s(k), tuning



width σf , and response modulation m:

f (k)(s) = me
− (s−s(k))2

2σf
2 (1)

The Gaussian tuning curve is a good description of the tuning properties of e.g. V1 or
MT neurons to variables such as stimulus orientation motion direction [13, 14, 15], and is
hence widely used in models of sensory coding [16, 17]. Large values of σf indicate coarse
coding, whereas small values of σf indicate sharp tuning.

Spike count responses of each neuron on each trial are assumed to follow a Poisson distri-
bution whose mean is given by the above neuronal tuning function (Eq. 1). The Poisson
model is widely used because it is the simplest model of neuronal firing that captures the
salient property of neuronal firing that the variance of spike counts is proportional to its
mean. The Poisson model neglects all correlations between spikes. This assumption is
certainly a simplification but it is sufficient to account for the majority of the information
transmitted by real cortical neurons [18, 19, 20] and, as we shall see later, it is mathemati-
cally convenient because it makes our model tractable.

2.2 Distribution of stimulus preferences among the afferent population

Neurons in sensory cortex receive a large number of inputs from other neurons with a vari-
ety of stimulus preferences. However, the majority of their inputs come from neurons with
roughly similar stimulus preference [1, 2, 3]. To characterise correctly this type of spread
of stimulus preference among the afferent population, we assume (unlike in previous stud-
ies [8]), that the probability distribution of the preferred stimulus among afferent neurons
follows a Gaussian distribution:

P (ŝ) =
1

(2π)D/2σD
p

e
− (ŝ−ŝ0)2

2σ2
p (2)

In Eq. (2) the parameter ŝ0 represents the the center of the distribution, thus being the
most represented preferred stimulus in the population. (we set, without loss of general-
ity, ŝ0 = 0.) The parameter σp controls the spread of stimulus preferences of the afferent
neuronal population: a small value of σp indicates that a large fraction of the population
have similar stimulus preferences, and a large value of σp indicates that all stimuli are
represented similarly. A Gaussian distribution of stimulus preferences of the afferent pop-
ulation fits well empirical data on distribution of preferred orientations of synaptic inputs
of neurons in both deep and superficial layers of ferret primary visual cortex [3].

3 Width of tuning and spread of stimulus preferences in visual cortex

To estimate the width of tuning σf and the spread of stimulus preferences σp of cortico-
cortical afferent populations in visual cortex, we reviewed critically published anatomical
and physiological data. We concentrated on excitatory synaptic inputs, which form the
majority of inputs to a cortical pyramidal neuron [10]. We computed σp by fitting (by a least
square method) the published histograms of synaptic connections as function of stimulus
preference of the input neuron to Gaussian distributions. Similarly, we determined σf by
fitting spike count histograms to Gaussian tuning curves.

When considering a target neuron in ferret primary visual cortex and using orientation as
the stimulus parameters, the spread of stimulus preferences σp of its inputs is ≈ 20o for
layer 5/6 neurons [3], and 16o [3] to 23o [21] for layer 2/3 neurons. The orientation tuning
width σf of the cortical inputs to the V1 target neuron is that of other V1 neurons that
project to it. This σf is 17o for Layer 4 neurons [22], and it is similar for neurons in deep
and superficial layers [3]. When considering a target neuron in Layer 4 of cat visual cortex



and orientation tuning, the spread of stimulus preference σp is 20o [2] and σf is ≈ 17o.
When considering a target neuron in ferret visual cortex and motion direction tuning, the
spread of tuning of its inputs σp is ≈ 30 o [1]. Motion direction tuning widths of macaque
neurons is ≈ 28o, and this width is similar across species (see [13]).

The most notable finding of our meta-analysis of published data is that σp and σf appear
to be approximately of the same size and their ratio σf/σp is distributed around 1, in the
range 0.7 to 1.1 for the above data. We will use our model to understand whether this range
of σf/σp corresponds to an optimal way to transmit information across a synaptic system.

4 Information theoretic quantification of population decoding

To characterise how a target neuronal system can decode the information about sensory
stimuli contained in the activity of its afferent neuronal population, we use mutual infor-
mation [23]. The mutual information between a set of stimuli and the neuronal responses
quantifies how well any decoder can discriminate among stimuli by observing the neuronal
responses. This measure has the advantage of being independent of the decoding mecha-
nism used, and thus puts precise constraints on the information that can be decoded by any
biological system operating on the afferent activity.

Previous studies on the information content of an afferent neuronal population [7, 8] have
assumed that the target neuronal decoding system can extract all the information during
synaptic transmission. To do so, the target neuron must conserve the ”label” of the spikes
arriving from multiple neurons at different sites on its dendritic tree [9]. Given the poten-
tial biophysical difficulty in processing each spike separately, a simple alternative to spike
labelling has been proposed, - spike pooling [10, 24]. In this scheme, the target neuron
simply sums up the afferent activity. To characterize how the decoding of afferent informa-
tion would work in both cases, we compute both the information that can be decoded by
either a system that processes separately spikes from different neurons (the ”labeled-line
information”) and the information available to a decoder that sums all incoming spikes (the
”pooled information”) [9, 24]. In the next two subsections we define these quantities and
we explain how we compute it in our model.

4.1 The information available to the the labeled-line decoder

The mutual information between the set of the stimuli and the labeled-line neuronal popu-
lation activity is defined as follows [9, 24]:

ILL(S,R) =
∫

dsP (s)
∑
r

P (r|s) log
P (r|s)
P (r)

(3)

where P (s) is the probability of stimulus occurrence (here taken for simplicity as a uni-
form distribution over the hypersphere of D dimensions and ‘radius’ sρ). P (r|s) is the
probability of observing a neuronal population response r conditional to the occurrence of
stimulus s, and P (r) =

∫
dsP (s)P (r|s). Since the response vector r keeps separate the

spike counts of each neuron, the amount of information in Eq. (3) is only accessible to a
decoder than can keep the label of which neuron fired which spike [9, 24]. The probability
P (r|s) is computed according to the Poisson distribution, which is entirely determined by
the knowledge of the tuning curves [5]. The labeled-line mutual information is difficult to
compute for large populations, because it requires the knowledge of the probability of the
large-dimensional response vector r. However, since in our model we assume that we have
a very large number of independent neurons in the population and that the total activity of
the system is of the order of its size, then we can use the following simpler (but still exact)



expression[16, 25]:

ILL(S,R) = H(S) − D

2
ln (2πe) +

1
2

∫
dsP (s) ln (|J (s)|) (4)

where H(S) is the entropy of the prior stimulus presentation distribution P (S), J (s) is
the Fisher information matrix and | . . . | stands for the determinant. The Fisher information
matrix is a D × D matrix who’s elements i, j are defined as follows:

Ji,j(s) = −
∑
r

P (r|s)
(

∂2

∂si sj
log P (r|s)

)
, (5)

Fisher information is a useful measure of the accuracy with which a particular stimulus can
be reconstructed from a single trial observation of neuronal population activity. However,
in this paper it is used only as a step to obtain a computationally tractable expression for the
labeled-line mutual information. The Fisher information matrix can be computed by taking
into account that for a population of Poisson neurons is just the sum of the Fisher informa-
tion for individual neurons, and the latter has a simple expression in terms of tuning curves
[16]. Since the neuronal population size N is is large, the sum over Fisher information
of individual neurons can be replaced by an integral over the stimulus preferences of the
neurons in the population, weighted by their probability density P (ŝ). After performing
the integral over the distribution of preferred stimuli, we arrived at the following result for
the elements of the Fisher information matrix:

Ji,j(s) =
Nτm

σ2
p

σD−2

(1 + σ2)
D
2 +2

(
δi,j + σ2 (δi,j + ξiξj)

)
e
− ξ2

2(1+σ2) (6)

where we have introduced the following short-hand notation σf/σp → σ and s/σp → ξ;
δi,j stands for the Kroneker Delta. From Eq. (6) it is possible to compute explicitly the
determinant |J (s)|, which has the following form:

|J (s)| =
D∏

i=1

λi = α(ξ)D(1 + σ2)D−1
(
1 + σ2(1 + ξ2)

)
(7)

where α(ξ) is given by:

α(ξ) =
Nτm

σ2
p

σD−2

(1 + σ2)
D
2 +1

e
− ξ2

2(1+σ2) (8)

Inserting Eq. (7) into Eq. (4), one obtains a tractable but still exact expression for the
mutual information , which has the advantage over Eq. (3) of requiring only an integral
over a D-dimensional stimulus rather than a sum over an infinite population.

We have studied numerically the dependence of the labeled-line information on the pa-
rameters σf and σp as a function of the number of encoded stimulus features D 1. We
investigated this by fixing σp and then varying the ration σf/σp over a wide range. Results
(obtained for σp = 1 but representative of a wide σf range) are reported in Fig. 1. We
found that, unlike the case of a uniform distribution of stimulus preferences [8], there is a
finite value of the width of tuning σf that maximizes the information for all D ≥ 2. Inter-
estingly, for D ≥ 2 the range 0.7 ≤ σf/σp ≤ 1.1 found in visual cortex either contains the
maximum or corresponds to near optimal values of information transmission. For D = 1,
information is maximal for very narrow tuning curves. However, also in this case the in-
formation values are still efficient in the cortical range σf/σp ≈ 1, in that the tail of the
D = 1 information curve is avoided in that region. Thus, the range of values of σf and σp

found in visual cortex allows efficient synaptic information transmission over a wide range
of number of stimulus features encoded by the neuron.

1We found (data not shown) that other parameters such as m and τ , had a weak or null effect on
the optimal configuration; see [17] for a D = 1 example in a different context.



0 2 4 6 8σ
f
/σ

p

ILL
(S

,R
)

D=5

D=1

Figure 1: Mutual labeled-line information as a function of the ratio of tuning curve width
and stimulus preference spread σf/σp. The curves for each stimulus dimensionality D
were shifted by a constant factor to separate them for visual inspection (lower curves cor-
respond to higher values of D). The y-axis is thus in arbitrary units. The position of the
maximal information for each stimulus dimension falls either inside the range of values
of σf/σp found in visual cortex, or very close to it (see text) . Parameters are as follows:
sρ = 2, rmax = 50Hz, τ = 10ms.

4.2 The information available to the the pooling decoder

We now consider the case in which the target neuron cannot process separately spikes
from different neurons (for example, a neuron that just sums up post-synaptic potentials
of approximately equal weight at the soma). In this case the label of the neuron that fired
each spike is lost by the target neuron, and it can only operate on the pooled neuronal
signal, in which the identity of each spike is lost. Pooling mechanisms have been proposed
as simple information processing strategies for the nervous system. We now study how
pooling changes the requirements for efficient decoding by the target neuron.

Mathematically speaking, pooling maps the vector r onto a scalar ρ equal to the sum of the
individual activities: ρ =

∑
rk. Thus, the mutual information that can be extracted by any

decoder that only pools it inputs is given by the following expression:

IP (S,R) =
∫

dsP (s)
∑

ρ

P (ρ|s) log
P (ρ|s)
P (ρ)

(9)

where P (ρ|s) and P (ρ) are the the stimulus-conditional and stimulus-unconditional proba-
bility of observing a pooled population response ρ on a single trial. The probability P (ρ|s)
can be computed by noting that a sum of Poisson-distributed responses is still a Poisson-
distributed response whose tuning curve to stimuli is just the sum of the individual tuning
curves. The pooled mutual information is thus a function of a single Poisson-distributed
response variables and can be computed easily also for large populations.

The dependence of the pooled information on the parameters σf and σp as a function of
the number of encoded stimulus features D is reported in Fig. 2. There is one important
difference with respect to the labeled-line information transmission case. The difference is
that, for the pooled information, there is a finite optimal value for information transmission
also when the neurons are tuned to one-dimensional stimulus feature. For all cases of stim-
ulus dimensionality considered, the efficient information transmission though the pooled
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Figure 2: Pooled mutual information as a function of the ratio of tuning curve width and
stimulus preference spread σf/σp. The maxima are inside the range of experimental values
of σf/σp found in the visual cortex, or very close to it (see text). As for Fig. 1, the curves
for each stimulus dimensionality D were shifted by a constant factor to separate them for
visual inspection (lower curves correspond to higher values of D). The y-axis is thus in
arbitrary units. Parameters are as follows: sρ = 2, rmax = 50 Hz,τ = 10ms.

neuronal decoder can still be reached in the visual cortical range 0.7 ≤ σf σp ≤ 1.1. This
finding shows that the range of values of σf and σp found in visual cortex allows effi-
cient synaptic information transmission even if the target neuron does not rely on complex
dendritic processing to conserve the label of the neuron that fired the spike.

5 Conclusions

The stimulus specificity of cortico-cortical connections is important for understanding the
mechanisms of generation of orientation tuning (see [4]) for a review). Here, we have
shown that the stimulus-specific structure of cortico-cortical connections may have also im-
plications for understanding cortico-cortical information transmission. Our results suggest
that, whatever the exact role of cortico-cortical synapses in generating orientation tuning,
their wiring allows efficient transmission of sensory information.
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