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Abstract

We propose a new set of criteria for learning algorithms in multi-agent
systems, one that is more stringent and (we argue) better justified than
previous proposed criteria. Our criteria, which apply most straightfor-
wardly in repeated games with average rewards, consist of three require-
ments: (a) against a specified class of opponents (this class is a parameter
of the criterion) the algorithm yield a payoff that approaches the payoff
of the best response, (b) against other opponents the algorithm’s payoff
at least approach (and possibly exceed) the security level payoff (or max-
imin value), and (c) subject to these requirements, the algorithm achieve
a close to optimal payoff in self-play. We furthermore require that these
average payoffs be achieved quickly. We then present a novel algorithm,
and show that it meets these new criteria for a particular parameter class,
the class of stationary opponents. Finally, we show that the algorithm
is effective not only in theory, but also empirically. Using a recently
introduced comprehensive game theoretic test suite, we show that the
algorithm almost universally outperforms previous learning algorithms.

1 Introduction

There is rapidly growing interest in multi-agent systems, and in particular in learning algo-
rithms for such systems. There is a growing body of algorithms proposed, and some argu-
ments about their relative merits and domains of applicability (for example, [14] and [17]).
In [15] we survey much of this literature, and argue that it suffers from not having a clear
objective criteria with which to evaluate each algorithm (this shortcoming is not unique to
the relatively small computer science literature on multi-agent learning, and is shared by
the much vaster literature on learning in game theory). In [15] we also define five different
coherent agendas one could adopt, and identify one of them – the agent-centric one – as
particularly relevant from the computer science point of view.

In the agent-centric agenda one asks how an agent can learn optimally in the presence of
other independent agents, who may also be learning. To make the discussion precise we
will concentrate on algorithms for learning in known, fully observable two-player repeated
games, with average rewards. We start with the standard definition of a finite stage game
(aka normal form game):



Definition 1 A two-player stage game is a tupleG = (A1, A2, u1, u2), where
• Ai is a finite set of actions available to playeri
• ui : A1 ×A2 → ℜ is a utility function for playeri

Figure 1 shows two well-known games from the literature, to which we’ll refer again later.

In a repeated game the stage game is repeated, finitely or infinitely. The agent accumulates
rewards at each round; in the finite case the agent’s aggregate reward is the average of the
stage-game rewards, and in the infinite case it is the limit average (we ignore the subtlety
that arises when the limit does not exist, but this case does not present an essential problem).

While the vast majority of the literature on multi-agent learning (surprisingly) does not
start with a precise statement of objectives, there are some exceptions, and we discuss
them in the next section, including their shortcomings. In the following section we pro-
pose a stronger set of criteria that, we believe, does not suffer from these limitations. We
then present an algorithm that provably meets these stronger requirements. However, we
believe that all formal requirements – including our own – are merely baseline guarantees,
and any proposed algorithm must be subjected to empirical tests. While many previous
proposals provide empirical results, we think it is fair to say that our level of empirical
validation is unprecedented in the literature. We show the results of tests for all pair-
wise comparisons of major existing algorithms, using a recently-developed game theoretic
testbed called GAMUT [13] to systematically sample a very large space of games.

2 Previous criteria for multi-agent learning

To our knowledge, Bowling and Veloso [1] were the first in the AI community to explicitly
put forth formal requirements. Specifically they proposed two criteria:

Rationality: If the other players’ policies converge to stationary policies then the learning
algorithm will converge to a stationary policy that is a best-response (in the stage game) to
the other players’ policies.

Convergence:The learner will necessarily converge to a stationary policy.

Throughout this paper, we define a stationary policy as one that selects an action at each
point during the game by drawing from the same distribution, regardless of past history.

Bowling and Veloso considered known repeated games and proposed an algorithm that
provably meets their criteria in 2x2 games (games with two players and two actions per
player). Later, Conitzer and Sandholm [5] adopted the same criteria, and demonstrated an
algorithm meeting the criteria for all repeated games.

At first glance these criteria are reasonable, but a deeper look is less satisfying. First, note
that the property of convergence cannot be applied unconditionally, since one cannot en-
sure that a learning procedure converges against all possible opponents without sacrificing
rationality. So implicit in that requirement is some limitation on the class of opponents.
And indeed both [1] and [5] acknowledge this and choose to concentrate on the case of
self-play, that is, on opponents that are identical to the agent in question.

Dare Y ield

Dare 0, 0 4, 1

Y ield 1, 4 2, 2

(a) Chicken

Cooperate Defect

Cooperate 3, 3 0, 4

Defect 4, 0 1, 1

(b) Prisoner’s Dilemma

Figure 1: Example stage games. The payoff for the row player is given first in each cell,
with the payoff for the column player following.



We will have more to say about self-play later, but there are other aspects of these criteria
that bear discussion. While it is fine to consider opponents playing stationary policies,
there are other classes of opponents that might be as relevant or even more relevant; this
should be a degree of freedom in the definition of the problem. For instance, one might be
interested in the classes of opponents that can be modeled by finite automata with at most
k states; these include both stationary and non-stationary strategies.

We find the property of requiring convergence to a stationary strategy particularly hard to
justify. Consider the Prisoner’s Dilemma game in Figure 1. The Tit-for-Tat algorithm1

achieves an average payoff of 3 in self-play, while the unique Nash equilibrium of the
stage game has a payoff of only 1. Similarly, in the game of Chicken, also shown in
Figure 1, a strategy that alternates daring while its opponent yields and yielding while its
opponent dares achieves a higher expected payoff in self-play than any stationary policy
could guarantee. This problem is directly addressed in [2] and a counter-proposal made for
how to consider equilibria in repeated games. But there is also a fundamental issue with
these two criteria; they can both be thought of as a requirement on theplay of the agent,
rather than thereward the agent receives.

Our final point regarding these two criteria is that they express properties that hold in the
limit, with no requirements whatsoever on the algorithm’s performance in any finite period.

But this question is not new to the AI community and has been addressed numerous times
in game theory, under the names of universal consistency, no-regret learning, and the Bayes
envelope, dating back to [9] (see [6] for an overview of this history). There is a fundamental
similarity in approach throughout, and we will take the two criteria proposed in [7] as being
representative.

Safety: The learning rule must guarantee at least the minimax payoff of the game. (The
minimax payoff is the maximum expected value a player can guarantee against any possible
opponent.)

Consistency: The learning rule must guarantee that it does at least as well as the best
response to the empirical distribution of play when playing against an opponent whose
play is governed by independent draws from any fixed distribution.

They then define universal consistency as the requirement that a learning rule do at least as
well as the best response to the empirical distribution regardless of the actual strategy the
opponent is employing (this implies both safety and consistency) and show that a modifi-
cation of the fictitious play algorithm [3] achieves this requirement. A limitation common
to these game theory approaches is that they were designed for large-population games and
therefore ignore the effect of the agent’s play on the future play of the opponent. But this
can pose problems in smaller games. Consider the game of Prisoner’s Dilemma once again.
Even if the opponent is playing Tit-for-Tat, the only universally consistent strategy would
be to defect at every time step, ruling out the higher payoff achievable by cooperating.

3 A new set of criteria for learning

We will try to take the best of each proposal and create a joint set of criteria with the
potential to address some of the limitations mentioned above.

We wish to keep the notion of optimality against a specific set of opponents. But instead of
restricting this set in advance, we’ll make this a parameter of the properties. Acknowledg-
ing that we may encounter opponents outside our target set, we will also incorporate the
requirement of safety, which guarantees we achieve at least the security value, also known

1The Tit-for-Tat algorithm cooperates in the first round and then for each successive round plays
the action its opponent played in the previous round.



as the maximin payoff, for the stage game. As a possible motivation for our approach,
consider the game of Rock-Paper-Scissors, which despite its simplicity has motivated sev-
eral international tournaments. While the unique Nash equilibrium policy is to randomize,
the winners of the tournaments are those players who can most effectively exploit their
opponents who deviate without being exploited in turn.

The question remains of how best to handle self-play. One method would be to require that
a proposed algorithm be added to the set of opponents it is required to play a best response
to. While this may seem appealing at first glance, it can be a very weak requirement on the
actual payoff the agent receives. Since our opponent is no longer independent of our choice
of strategy, we can do better than settling for just any mutual best response, and try to max-
imize the value we achieve as well. We therefore propose requiring the algorithm achieve
at least the value of some Nash equilibrium that is Pareto efficient over the set of Nash
equilibria.2 Similarly, algorithms exist that satisfy ‘universal consistency’ and if played
by all agents will converge to a correlated equilibria[10], but this result provides an even
weaker constraint on the actual payoff received than convergence to a Nash equilibrium.

Let k be the number of outcomes for the game andb the maximum possible difference in
payoffs across the outcomes. We require that for any choice ofǫ > 0 andδ > 0 there exist
aT0, polynomial in1

ǫ
, 1

δ
, k, andb, such that for any number of roundst > T0 the algorithm

achieves the following payoff guarantees with probability at least1− δ.

Targeted Optimality: When the opponent is a member of the selected set of opponents,
the average payoff is at leastVBR−ǫ, whereVBR is the expected value of the best response
in terms of average payoff against the actual opponent.

Compatibility: During self-play, the average payoff is at leastVselfP lay − ǫ, where
VselfP lay is defined as the minimum value achieved by the player in any Nash equilibrium
that is not Pareto dominated by another Nash equilibrium.

Safety: Against any opponent, the average payoff is at leastVsecurity − ǫ, with Vsecurity

defined asmaxπ1∈Π1
minπ2∈Π2

EV (π1, π2).3

4 An algorithm

While we feel designing algorithms for use against more complex classes of opponent is
critical, as a minimal requirement we first show an algorithm that meets the above criteria
for the class of stationary opponents that has been the focus of much of the existing work.
Our method incorporates modifications of three simple strategies: Fictitious Play [3], Bully
[12], and the maximin strategy in order to create a more powerful hybrid algorithm.

Fictitious Play has been shown to converge in the limit to the best response against a sta-
tionary opponent. Each round it plays its best response to the most likely stationary op-
ponent given the history of play. Our implementation uses a somewhat more generous
best-response calculation so as to achieve our performance requirements during self-play.

BRǫ(π)← arg max
x∈X(π,ǫ)

(EOV (x, π)), 4

where X(π, ǫ) = {y ∈ Π1 : EV (y, π) ≥ max
z∈Π1

(EV (z, π))− ǫ}

2An outcome is Pareto efficient over a set if there is no other outcome in that set with a payoff at
least as high for every agent and strictly higher for at least one agent.

3Throughout the paper, we useEV (π1, π2) to indicate the expected payoff to a player for playing
strategyπ1 against an opponent playingπ2 andEOV (π1, π2) as the expected payoff the opponent
achieves.Π1 andΠ2 are the sets of mixed strategies for the agent and its opponent respectively.

4Note thatBR0(π) is a member of the standard set of best response strategies toπ.



We extend the Bully algorithm to consider the full set of mixedstrategies and again maxi-
mize our opponent’s value when multiple strategies yield equal payoff for our agent.

BullyMixed← arg max
x∈X

(EOV (x,BR(x))),

where X = {y ∈ Π1 : EV (y,BR0(y)) = max
z∈Π1

(EV (z,BR0(z)))}

The maximin strategy is defined as

Maximin← arg max
π1∈Π1

min
π2∈Π2

EV (π1, π2)

We will now show how to combine these strategies into a single method satisfying all
three criteria. In the code shown below,t is the current round,AvgV aluem is the av-
erage value achieved by the agent during the lastm rounds,VBully is shorthand for
EV (BullyMixed,BR0(BullyMixed)), anddt2

t1
represents the distribution of opponent

actions for the period from roundt1 to roundt2.

Set strategy = BullyMixed
for τ1 time steps

Play strategy
for τ2 time steps

if (strategy == BullyMixed AND AvgV alueH < VBully − ǫ1)
With probability, p, set strategy = BRǫ2(d

t
0)

Play strategy
if ||dτ1

0 − dt
t−τ1
|| < ǫ3

Set bestStrategy = BRǫ2(d
t
0)

else if (strategy == BullyMixed AND AvgV alueH > VBully − ǫ1)
Set bestStrategy = BullyMixed

else
Set bestStrategy = BestResponse

while not end of game
if avgV aluet−τ0

< Vsecurity − ǫ0
Play maximin strategy for τ3 time steps

else
Play bestStrategy for τ3 time steps

The algorithm starts out with a coordination/exploration period in which it attempts to de-
termine what class its opponent is in. At the end of this period it chooses one of three
strategies for the rest of the game. If it determines its opponent may be stationary it settles
on a best response to the history up until that point. Otherwise, if the BullyMixed strategy
has been performing well it maintains it. If neither of these conditions holds, it adopts a
default strategy, which we have set to be the BestResponse strategy. This strategy changes
each round, playing the best response to the maximum likelihood opponent strategy based
on the lastH rounds of play. Once one of these strategies has been selected, the algo-
rithm plays according to it whenever the average value meets or exceeds the security level,
reverting to the maximin strategy if the value drops too low.

Theorem 1 Our algorithm satisfies the three properties stated in section 3 for the class of
stationary opponents, with aT0 proportional to( b

ǫ
)3 1

δ
.

This theorem can be proven for all three properties using a combination of basic probability
theory and repeated applications of the Hoeffding inequality [11], but the proof itself is
prohibitively long for inclusion in this publication.



5 Empirical results

Although satisfying the criteria we put forth is comforting, we feel this is but a first step
in making a compelling argument that an approach might be useful in practice. Tradition-
ally, researchers suggesting a new algorithm also include an empirical comparison of the
algorithm to previous work. While we think this is a critical component of evaluating an
algorithm, most prior work has used tests against just one or two other algorithms on a
very narrow set of test environments, which often vary from researcher to researcher. This
practice has made it hard to consistently compare the performance of different algorithms.

In order to address this situation, we’ve started to code a collection of existing algorithms.
Combining this set of algorithms with a wide variety of repeated games from GAMUT
[13], a game theoretic test suite, we have the beginnings of a comprehensive testbed for
multi-agent learning algorithms. In the rest of this section, we’ll concentrate on the results
for our algorithm, but we hope that this testbed can form the foundation for a broad, con-
sistent framework of empirical testing in multi-agent learning going forward. For all of
our environments we conducted our tests using a tournament format, where each algorithm
plays all other algorithms including itself.
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Figure 2: Average value for last 20K rounds (of 200K) across all games in GAMUT.

Let us first consider the results of a tournament over a full set of games in GAMUT. Figure
2 portrays the average value achieved by each agent (y-axis) averaged over all games, when
playing different opponents (x-axis). The set of agents includes our strategy (MetaStrat-
egy), six different adaptive learning approaches (Stochastic Fictitious Play [3,8], Stochastic
IGA[16], WoLF-PHC[1], Hyper-Q learning[18], Local Q-learning[19], and JointQ-Max[4]
(which learns Q-values over the joint action space but assumes its opponent will cooperate
to maximize its payoff)), and four fixed strategies (BullyMixed, Bully[12], the maximin
strategy, and Random (which selects a stationary mixed strategy at random)). We have
chosen a subset of the most successful algorithms to display on the graph. Against the four
stationary opponents, all of the adaptive learners fared equally well, while fixed strategy
players achieved poor rewards. In contrast, BullyMixed fared well against the adaptive
algorithms. As desired, our new algorithm combined the best of these characteristics to
achieve the highest value against all opponents except itself. It fares worse than BullyMixed
since it will always yield to BullyMixed, giving away the more advantageous outcome in
games like Chicken. However, when comparing how each agent performs in self-play,
our algorithm scores quite well, finishing a close second to Hyper-Q learning while the



two Bully algorithms finish near last. Hyper-Q is able to gain in self-play by occasionally
converging to outcomes with high social welfare that our strategy does not consider.
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Figure 3: Percent of maximum value for last 20K rounds (of 200K) averaged across all
opponents for selected games in GAMUT. The rewards were divided by the maximum
reward achieved by any agent to make visual comparisons easier.

So far we’ve seen that our new algorithm performs well when playing against a variety of
opponents. In Figure 3 we show the reward for each agent, averaged across the set of possi-
ble opponents for a selection of games in GAMUT. Once again our algorithm outperforms
the existing algorithms in nearly all games. When it fails to achieve the highest reward it
often appears to be due to its policy of “generosity”; in games where it has multiple actions
yielding equal value, it chooses a best response that maximizes its opponent’s value.

The ability to study how individual strategies fare in each class of environment reflects an
advantage of our more comprehensive testing approach. In future work, this data can be
used both to aid in the selection of an appropriate algorithm for a new environment and to
pinpoint areas where an algorithm might be improved. Note that we use environment here
to indicate a combination of both the game and the distribution over opponents.

6 Conclusions and Future Work

Our objective in this work was to put forth a new set of criteria for evaluating the perfor-
mance of multi-agent learning algorithms as well as propose a more comprehensive method
for empirical testing. In order to motivate this new approach for vetting algorithms, we have
presented a novel algorithm that meets our criteria and outperforms existing algorithms in a
wide variety of environments. We are continuing to work actively to extend our approach.
In particular, we wish to demonstrate the generality of our approach by providing algo-
rithms that calculate best response to different sets of opponents (conditional strategies,
finite automata, etc.) Additionally, the criteria need to be generalized forn-player games



and we hope to combine our method for known games with methods for learning the struc-
ture of the game, ultimately devising new algorithms for unknown stochastic games.
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