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Abstract

The standard approach to the classification of objects is to consider the
examples as independent and identically distributed (iid). In many real
world settings, however, this assumption is not valid, because a topo-
graphical relationship exists between the objects. In this contribution we
consider the special case of image segmentation, where the objects are
pixels and where the underlying topography is a 2D regular rectangular
grid. We introduce a classification method which not only uses measured
vectorial feature information but also the label configuration within a to-
pographic neighborhood. Due to the resulting dependence between the
labels of neighboring pixels, a collective classification of a set of pixels
becomes necessary. We propose a new method called *Topographic Sup-
port Vector Machine’ (TSVM), which is based on a topographic kernel
and a self-consistent solution to the label assignment shown to be equiv-
alent to a recurrent neural network. The performance of the algorithm is
compared to a conventional SVM on a cell image segmentation task.

1 Introduction

The segmentation of natural images into semantically meaningful subdivisions can be con-
sidered as one or more binary pixel classification problems, where two classes of pixels are
characterized by some measurement data (features). For each binary problem the task is
to assign a set of new pixels to one of the two classes using a classifier trained on a set of
labeled pixels (training data).



In conventional classification approaches usually the assumption of iid examples is made,
so the classification result is determined solely by the measurement data. Natural images,
however, possess a topographic structure, in which there are dependencies between the
labels of topographic neighbors, making the data non-iid. Therefore, not only the measure-
ment data, but also the labels of the topographic neighbors can be used in the classification
of a pixel. It has been shown for a number of problems that dependencies between in-
stances can improve model accuracy. A Conditional Random Field approach approach has
been used for labeling text sequences by [1]. Combining this idea with local discriminative
models, in [2] a discriminative random field was used to model the dependencies between
the labels of image blocks in a probabilistic framework. A collective classification rela-
tional dependency network was used in [3] for movie box-office receipts prediction and
paper topic classification. The maximization of the per label margin of pairwise Markov
networks was applied in [4] to handwritten character recognition and collective hypertext
classification. There, the number of variables and constraints of the quadratic programming
problem was polynomial in the number of labels.

In this work, we propose a method which is also based on margin maximization and allows
the collective assignments of a large humber of binary labels which have a regular grid
topography. In contrast to [4] the number of constraints and variables does not depend on
the number of labels. The method called topographic support vector machine (TSVM) is
based on the assumption that knowledge about the local label configuration can improve the
classification of a single data point. Consider as example the segmentation of a collection
of images depicting physical objects of similar shape, but high variability in gray level and
texture. In this case, the measurements are dissimilar, while the local label configurations
show high similarity.

Here, we apply the TSVM to the supervised bottom-up segmentation of microscopic im-
ages of Papanicolaou stained cervical cell nuclei from the CSSIP pap smear dataset®. Seg-
mentation of these images is important for the detection of cervical cancer or precancerous
cells. The final goal is to use so-called malignancy associated changes (MACs), e.g. a
slight shift of the distribution of nuclear size not yet visual to the human observer, in order
to detect cancer at an early stage [5]. A previously used bottom-up segmentation approach
for this data using morphological watersheds was reported to have difficulties with weak
gradients and the presence of other large gradients adjacent to the target [5]. Top-down
methods like active contour models have successfully been used [6], but require heuristic
initialization and error correction procedures.

2 Classifi cation using a Topographic Support Vector Machine

Let O = {o1,...,0,} be a set of n sites on a 2D pixel-grid and G = {G,,0 € O} be
a neighborhood system for O, where G, is the set of neighbors of o and neighborhood
is defined by o & G, and 0 € G, < p € G,. For each pixel site o; from the set O,
a binary label y; € {—1,+1} giving the class assignment is assumed to be known. To
simplify the notation, in the following we are going to make use of multi-indices written in
the form of vectors, referring to pairs of indices on a two-dimensional grid. We define the
neighborhood of order cas G¢ = {G;,i € 0};Gi = {k € O : 0 < (k—1i)? < ¢}. Thisway,
G! describes the first order neighborhood system (4 neighbors), G2 the second order system
(8 neighbors), and so on. Each pixel site is characterized by some measurement vector. This
could for example be the vector of gray value intensities at a pixel site, the gray value patch
around a central pixel location, or the responses to a bank of linear or nonlinear filters (e.g.
Gabor coefficients). Using a training set composed of (possibly several) sets of pixel sites,
each accompanied by a set of measurement vectors X = {x;,V: € [1..n]} and a set of
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labels Y = {y;,Vi € [1..n]} (e.g. @ manually labeled image), the task of classification is
to assign class labels to a set of « pixels sites &/ = {uq, ..., u,, } 0f an unlabeled image, for
which a set of measurements X = {%;, Vi € [1..x]} is available. For the classification we
will use a support vector machine.

2.1 Support Vector Classifi cation

In Support Vector Classification (SVC) methods ([7]), a kernel is used to solve a complex
classification task in a usually high-dimensional feature space via a separating hyperplane.
Results from statistical learning theory ([8]) show that maximizing the margin (the distance
of the closest data point to the hyperplane) leads to improved generalization abilities. In
practice, the optimal margin hyperplane can be obtained solving a quadratic programming
problem. Several schemes have been introduced to deal with noisy measurements via the
introduction of slack variables. In the following we will shortly review one such scheme,
the C-SVM, which is also later used in the experiments. For a canonical separating hy-
perplane (w,b) in a higher dimensional feature space 7, to which the n variables x; are
mapped by ¢(x), and n slack variables &; the primal objective function of a C-SVM can

be formulated as
. 1 2 O <&
vt (391 + 5 ). @

subjectto y;(wlp(x;) +b) <1-&, &>0, C>0, i=1,..,n.

In order to classify a new object & with unknown label, the following decision rule is
evaluated:

m
Fxn) =s9n( Y eiyi K (xu,%3) +b), )
=1
where the sum runs over all m support vectors.

2.2 Topographic Kernel

We now assume that the label of each pixel is determined by both the measurement and
the set of labels of its topographic neighbors. We define a vector yg, where the labels of
the g topographic neighbors of the pixel h are concatenated in an arbitrary, but fixed order.
We propose a support vector classifier using an extended kernel, which in addition to the
measurement vector xy,, also includes the vector yg, :

K(Xhaxj7ygh7YQj) == Kl(xhaxj) + A KQ(yghvygj)a (3)

where )\ is a hyper-parameter. Kernel K; can be an arbitrary kernel working on the mea-
surements. For kernel K5 an arbitrary dot-product kernel might be used. In the following
we restrict ourselves to a linear kernel (corresponding to the normalized Hamming distance
between the local label configurations)

1
Ks(ygn,Yg;) = p (Yeulyg;) 4

where (...|...) denotes a scalar product. The kernel K defined in eq. (4) thus consists of a
dot-product between these vectors divided by their length. For a neighborhood Gj. of order
¢ We obtain

1
K2(ygh’ij) = Z Yh+s - Yj+s (5)
Is|<v/c,s#0

The linear kernel K5 in (4) takes on its maximum value, if the label configurations are
identical, and its lowest value if the label configuration is inverted.



2.3 Learning phase

If a SVM is trained using the topographic kernel (3), the topographic label configuration is
included in the learning process. The resulting support vectors will still contain the relevant
information about the measurements, but additionally the label neighborhood information
relevant for a good distinction of the classes.

2.4 Classifi cation phase

In order to collectively classify a set of x new pixel sites with unknown topographic label
configuration, we propose the following iterative approach to achieve a self-consistent so-
lution to the classification problem. We denote the labels at step 7 as yn(7), vh. At each
step 7 new labels are assigned according to

yh(T) = Sgn(zaj “Yv () - K(Xh7xv(j)aygh(7— - 1)7ygv(j)) + b)a vh. (6)
=1

The sum runs over all m support vectors, whose indices on the 2D grid are denoted by
the vector v(j). Since initially the labels are unknown, we use at step 7 = 0 the results
from a conventional support-vector machine (A = 0) as initialization for the labels. For the
following steps some estimates of the neighboring labels are available from the previous
iteration. Using this new topographic label information in addition to the measurement
information, using (6) a new assignment decision for the labels is made. This leads to an
iterative assignment of new labels.

If we write the contributions from kernel K, which depend only on x and do not change
with 7, as ¢ (j) = o - yv(j) - K1(Xn, Xv(;)) equation (6) becomes

m

Yn(T) = sgn(Z [Aajyviy Ka2(ye, (T —1),¥6,,,) + en(d)] + b)Nh- )

j=1

Putting in the linear kernel from equation (5), we get

() =san( 3 [osmnns D Wnrs(m =1 weiyisl + enli)] +0), vhe ®)
Jj=1 q |s|<+/c,s#0

Interchanging the sums, using the definitions

ANy Nt (ke : keg
_ =1 Y Yv (i) Yv(5)+(k—h) h
Wh k { 7= 0 k ¢ G ©)
and .
O =—(D_cn(j) +b), (10)
=1
we obtain
() =sn( D p(r = 1) - whse — 6w ), Vh. (11)
k

This corresponds to the equations describing the dynamics of a recurrent neural network
composed of McCulloch-Pitts neurons [9]. The condition for symmetric weights wy x =
Wy n 1S equivalent to an inversion symmetry of the label configurations of the support vec-
tors in the neighborhood topology, therefore the weights in equation (9) are not necessarily
symmetric. A suitable stopping criterion for the iteration is that the net reaches either a
fixed point yn(7) = yn(7 — 1), Vh, or an attractor cycle yn(7) = yn(p),p < 7 — 1,Vh.



The network described by eq. (11) corresponds to a diluted network of  binary neurons
with no self-interaction and asymmetric weights. One can see from eq.(9) that the net-
work has only local connections, corresponding to the topographic neighborhood Gy,. The
measurement xj, only influences the individual unit threshold 6y, of the network, via the
weighted sum over all support vectors of the contributions from kernel K; (eq. (10)). The
label configurations of the support vectors, on the other hand, are contained in the network
weights via eq.(9). The weights are multiplied by the hyper-parameter A\, which determines
how much the label configuration influences the class decision in comparison to the mea-
surements. It has to be adjusted to yield optimal results for a class of data sets. For A = 0
the TSVM becomes a conventional SVM.

25 Symmetrization of the weights

In order to ensure convergence, we suggest to use an inversion symmetric version K% of
kernel K. For the pixel grid we can define the inversion operationasl+t —1—t, t¢&
N2, Vl+t € G, and denote the inverse of a by a. Taking the inverse of the vector yg,,
in which the set yg, is concatenated in an arbitrary but fixed order, leads to a reordering of
the components of the vector. The benefit from the chosen inversion symmetric kernel is
that the self consistency equations for the labels will turn out to be equivalent to a Hopfield
net, which has proven convergence properties. We define the new kernel as

K™ (yg,,vg,) = g (Yonl¥a,) + (VoulTe,))- (12)

Although only the second argument is inverted within the kernel, the value of this kernel
does not depend on the order of the arguments.

Proof It follows from the definition of the inversion operator and the dot product that
(Youlyg;) = (Yaul¥g;) = (vglye.) = (Yg|¥gu) and (¥g.lyg;) = (vaul¥g;) =
(¥g;1¥g.) = (¥g;|¥gy)- Therefore,

K" (You:¥g) = —((Yaulyg) + (Yaul¥g)) = % (Yg;¥gn) + (¥g;ly0.))

R =

((yglygn) + (vg;|¥6u)) = K3 (yg;,Yan) 0.

Putting kernel (12) into eq.(7) and defining

AN _ :
wik! = { 4 21 QY () (Yo () +(e-m) + yv(])—(k—h)()) 1; ; g: (13)

we get

un(r) = son( D w(r = 1) wy — 0n) Vh, (14)
k

sym

Since the network weights Wy defined in eq.(13) are symmetric this corresponds to the
equation describing the dynamics during the retrieval phase of a Hopfield network [10].
Instead of taking the sum over all patterns, the sum is taken over all support vectors. The
weight between two neurons in the original Hopfield net corresponds to the correlation
between two components (over all fundamental patterns). In (13) the weight only depends
on the difference vector k-h between the two neurons on the 2D grid and is proportional to
the correlation (over all support vectors) between the label of a support vector and the label
in the distance k-h.



Table 1: Average misclassification rate R and the standard deviation of the mean o at
optimal hyper-parameters C, S and .

algorithm | log, C' | logy S | A | R[%] | o[%] |
0.5

SVM 4 0 2.23 | 0.05
STSVM | 4 0.5 12| 196 | 0.06
TSVM 2 0.5 14| 186 | 0.05

3 Experiments

We applied the above algorithms to the binary classification of pixel sites of cell images
from the CSSIP pap smear dataset. The goal was to assign the label +1 to the pixels belong-
ing to the nucleus, and -1 to all others. The dataset contains three manual segmentations
of the nucleus’ boundaries, from which we generated a "ground truth’ label for the area
of the nucleus using a majority voting. Only the first 300 images were used in the exper-
iments. As a measurement vector we took a column-ordering of a 3x3 gray value patch
centered on a pixel site. In order to measure the classification performance for a non-
iid data set, we estimated the test error based on the collective classification of all pixels
in several randomly chosen test images. We compared three algorithms: A conventional
SVM, the "TSVM’ with the topographic kernel K5 from eq.(4) and the *'STSVM’ with the
inversion symmetric topographic kernel K% from eq.(12). In the experiments we used
a label neighborhood of order 32, which corresponds to ¢ = 100 neighbors. For kernel
K we used an RBF kernel K1 (x1,x2) = exp(—||x1 — x2[|?/S?) with hyper-parameter
S. Since the data set was very large, no cross-validation or resampling techniques were
required, and only a small subset of the available training data could be used for training.
We randomly sampled several disjoint training sets in order to improve the accuracy of
the error estimation. First, the hyper-parameters .S and C (for TSVM and STSVM also \)
were optimized via a grid search in parameter space. This was done by measuring the av-
erage test error over 20 test images and 5 training sets. Then, the test of the classifiers was
conducted at the in each case optimal hyper-parameters for 20 yet unused test images and
50 randomly sampled disjoint training sets. In all experiments using synchronous update
either a fixed point or an attractor cycle of length two was reached. The average number of
iterations needed was 12 (TSVM) and 13 (STSVM). Although the convergence properties
have only been formally proven for the symmetric weight STSVM, experimental evidence
suggests the same convergence properties for the TSVM. The results for synchronous up-
date are shown in table 1 (results using asynchronous update differed only by 0.01%). The
performance of both topographic algorithms is superior to the conventional SVM, while
the TSVM performed slightly better than the STSVM. For the top-down method in [6] the
results were only qualitatively assessed by a human expert, not quantitatively compared to
a manual segmentation, therefore a direct comparison to our results was not possible. To
illustrate the role of the hyper-parameter A, fig.1 shows 10 typical test images and their
segmentations achieved by an STSVM at different values of A for fixed S and C. For
increasing A the label images become less noisy, and at A = 0.4 most artifacts have disap-
peared. This is caused by the increasing weight put on the label configuration via kernel
K3¥™. Increasing A even further will eventually lead to the appearance of spurious arti-
facts, as the influence of the label configuration will dominate the classification decision.

4 Conclusions

We have presented a classification method for a special case of non-iid data in which the
objects are linked by a regular grid structure. The proposed algorithm is composed of two
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Figure 1: Final labels assigned by the STSVM at fixed hyper-parameters C' = 26, S
@A=0,b)Ax=0.1,(c)A=0.2,(d)A=0.3,(e) A =0.4.



components: The first part is a topographic kernel which integrates conventional feature
information and the information of the label configurations within a topographic neighbor-
hood. The second part consists of a collective classification with recurrent neural network
dynamics which lets local label configurations converge to attractors determined by the
label configurations of the support vectors. For the asymmetric weight TSVM, the dimen-
sionality of the problem is increased by the neighborhood size as compared to a conven-
tional SVM (twice the neighborhood size for the symmetric weight STSVM). However,
the number of variables and constraints does not increase with the number of data points to
be labeled. Therefore, the TSVM and the STSVM can be applied to image segmentation
problems, where a large number of pixel labels have to be assigned simultaneously.

The algorithms were applied to the bottom-up cell nucleus segmentation in pap smear im-
ages needed for the detection of cervical cancer. The classification performance of the
TSVM and STSVM were compared to a conventional SVM, and it was shown that the in-
clusion of the topographic label configuration lead to a substantial decrease in the average
misclassification rate. The two topographic algorithms were much more resistant to noise
and smaller artifacts. A removal of artifacts which have similar size and the same measure-
ment features as some of the nuclei cannot be achieved by a pure bottom-up method, as
this requires a priori model knowledge. In practice, the lower dimensional TSVM is to be
preferred over the STSVM, since it is faster and performed slightly better.
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