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Abstract

Amino acid profiles, which capture position-specific mutation prob-
abilities, are a richer encoding of biological sequences than the in-
dividual sequences themselves. However, profile comparisons are
much more computationally expensive than discrete symbol com-
parisons, making profiles impractical for many large datasets. Fur-
thermore, because they are such a rich representation, profiles can
be difficult to visualize. To overcome these problems, we propose a
discretization for profiles using an expanded alphabet representing
not just individual amino acids, but common profiles. By using an
extension of information bottleneck (IB) incorporating constraints
and priors on the class distributions, we find an informationally
optimal alphabet. This discretization yields a concise, informative
textual representation for profile sequences. Also alignments be-
tween these sequences, while nearly as accurate as the full profile-
profile alignments, can be computed almost as quickly as those
between individual or consensus sequences. A full pairwise align-
ment of SwissProt would take years using profiles, but less than
3 days using a discrete IB encoding, illustrating how discrete en-
coding can expand the range of sequence problems to which profile
information can be applied.

1 Introduction

One of the most powerful techniques in protein analysis is the comparison of a
target amino acid sequence with phylogenetically related or homologous proteins.
Such comparisons give insight into which portions of the protein are important by
revealing the parts that were conserved through natural selection. While mutations
in non-functional regions may be harmless, mutations in functional regions are often
lethal. For this reason, functional regions of a protein tend to be conserved between
organisms while non-functional regions diverge.
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Many of the state-of-the-art protein analysis techniques incorporate homologous
sequences by representing a set of homologous sequences as a probabilistic profile,
a sequence of the marginal distributions of amino acids at each position in the
sequence. For example, Yona et al.[10] uses profiles to align distant homologues from
the SCOP database[3]; the resulting alignments are similar to results from structural
alignments, and tend to reflect both secondary and tertiary protein structure. The
PHD algorithm[5] uses profiles purely for structure prediction. PSI–BLAST[6] uses
them to refine database searches.

Although profiles provide a lot of information about the sequence, the use of pro-
files comes at a steep price. While extremely efficient string algorithms exist for
aligning protein sequences (Smith-Waterman[8]) and performing database queries
(BLAST[6]), these algorithms operate on strings and are not immediately applica-
ble to profile alignment or profile database queries. While profile-based methods
can be substantially more accurate than sequence-based ones, they can require at
least an order of magnitude more computation time, since substitution penalties
must be calculated by computing distances between probability distributions. This
makes profiles impractical for use with large bioinformatics databases like SwissProt,
which recently passed 150,000 sequences. Another drawback of profile as compared
to string representations is that it is much more difficult to visually interpret a
sequence of 20 dimensional vectors than a sequence of letters.

Discretizing the profiles addresses both of these problems. First, once a profile is rep-
resented using a discrete alphabet, alignment and database search can be performed
using the efficient string algorithms developed for sequences. For example, when
aligning sequences of 1000 elements, runtime decreases from 20 seconds for profiles
to 2 for discrete sequences. Second, by representing each class as a letter, discretized
profiles can be presented in plain text like the original or consensus sequences, while
conveying more information about the underlying profiles. This makes them more
accurate than consensus sequences, and more dense than sequence logos (see figure
1). To make this representation intuitive, we want the discretization not only to
minimize information loss, but also to reflect biologically meaningful categories by
forming a superset of the standard 20-character amino acid alphabet. For example,
we use “A” and “a” for strongly- and weakly-conserved Alanine. This formulation
demands two types of constraints: similarities of the centroids to predefined values,
and specific structural similarities between strongly- and weakly-conserved variants.
We show below how these constraints can be added to the original IB formalism.

In this paper, we present a new discrete representation of proteins that takes into
account information from homologues. The main idea behind our approach is to
compress the space of probabilistic profiles in a data-dependent manner by clustering
the actual profiles and representing them by a small alphabet of distributions. Since
this discretization removes some of the information carried by the full profiles,
we cluster the distribution in a way that is directly targeted at minimizing the
information loss. This is achieved using a variant of Information Bottleneck (IB)[9],
a distributional clustering approach for informationally optimal discretization.

We apply our algorithm to a subset of MEROPS[4], a database of peptidases or-
ganized structurally by family and clan, and analyze the results in terms of both
information loss and alignment quality. We show that multivariate IB in particular
preserves much of the information in the original profiles using a small number of
classes. Furthermore, optimal alignments for profile sequences encoded with these
classes are much closer to the original profile-profile alignments than are alignments
between the seed proteins. IB discretization is therefore an attractive way to gain
some of the additional sensitivity of profiles with less computational cost.
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Figure 1: (a) Profile, (b) sequence logo[2], and (c) textual representations for part
of an alignment of Pepsin A precursor P00790, showing IB’s concision compared to
profiles and logos, and its precision compared to single sequences.

2 Information Bottleneck

Information Bottleneck [9] is an information theoretic approach for distributional
clustering. Given a joint distribution p(X, Y ) of two random variables X and Y , the
goal is to obtain a compressed representation C of X, while preserving the informa-
tion about Y . The two goals of compression and information preservation are quan-
tified by the same measure of mutual information I(X;Y ) =

∑
x,y p(x, y) log p(x,y)

p(x)p(y)

and the problem is therefore defined as the constrained optimization problem
minp(c|x):I(C;Y )>K I(C;X) where K is a constraint on the level of information
preserved about Y , and the problem should also obey the constraints p(y|c) =∑

x p(y|x)p(x|c) and p(y) =
∑

x p(y|x)p(x). This constrained optimization can be
reformulated using Lagrange multipliers, and turned into a tradeoff optimization
function with Lagrange multiplier β:

min
p(c|x)

L def= I(C;X)− βI(C;Y ) (1)

As an unsupervised learning technique, IB aims to characterize the set of solutions
for the complete spectrum of constraint values K. This set of solutions is identical to
the set of solutions of the tradeoff optimization problem obtained for the spectrum
of β values.

When X is discrete, its natural compression is fuzzy clustering. In this case, the
problem is not convex and cannot be guaranteed to contain a single global minimum.
Fortunately, its solutions can be characterized analytically by a set of self consistent
equations. These self consistent equations can then be used in an iterative algorithm
that is guaranteed to converge to a local minimum. While the optimal solutions of
the IB functional are in general soft clusters, in practice, hard cluster solutions are
sometimes more easily interpreted. A series of algorithms was developed for hard
IB, including an algorithm that can be viewed as a one-step look-ahead sequential
version of K-Means [7].

To apply IB to the problem of profiles discretization discussed here, X is a given
set of probabilistic profiles obtained from a set of aligned sequences and Y is the
set of 20 amino acids.



2.1 Constraints on centroids’ semantics

The application studied in this paper differs from standard IB applications in that
we are interested in obtaining a representation that is both efficient and biologi-
cally meaningful. This requires that we add two kinds of constraints on clusters’
distributions, discussed below.

First, some clusters’ meanings are naturally determined by limiting them to corre-
spond to the common 20-letter alphabet used to describe amino acids. From the
point of view of distributions over amino acids, each of these symbols is used today
as the delta function distribution which is fully concentrated on a single amino acid.
For the goal of finding an efficient representation, we require the centroids to be
close to these delta distributions. More generally, we require the centroids to be
close to some predefined values ĉi, thus adding constraints to the IB target function
of the form DKL[p(y|ĉi)||p(y|ci)] < Ki for each constrained centroid. While solving
the constrained optimization problem is difficult, the corresponding tradeoff opti-
mization problem can be made very similar to standard IB. With the additional
constraints, the IB trade-off optimization problem becomes

min
p(c|x)

L′ ≡ I(C;X)− βI(C;Y ) + β
∑
ci∈C

β(ci)DKL[p(y|ĉi)||p(y|ci)] . (2)

We now use the following identity∑
x,c

p(x, c)DKL[p(y|x)||p(y|c)]

=
∑

x

p(x)
∑

y

p(y|x) log p(y|x)−
∑

c

p(c)
∑

y

log p(y|c)
∑

x

p(y|x)p(x|c)

= −H(Y |X) + H(Y |C) = I(X;Y )− I(Y ;C)

to rewrite the IB functional of Eq. (1) as

L = I(C;X) + β
∑
c∈C

∑
x∈X

p(x, c)DKL[p(y|x)||p(y|c)]− βI(X;Y )

When
∑

β(ci) ≤ 1 we can similarly rewrite Eq. (2) as

L′ = I(C;X) + β
∑
x∈X

p(x)
∑
ci∈C

p(ci|x)DKL[p(y|x)||p(y|ci)] (3)

+β
∑
ci∈C

β(ci)DKL[p(y|ĉi)||p(y|ci)]− βI(X;Y )

= I(C;X) + β
∑

x′∈X′

p(x′)
∑
ci∈C

p(ci|x′)DKL[p(y|x′)||p(y|ci)]− βI(X;Y )

The optimization problem therefore becomes equivalent to the original IB problem,
but with a modified set of samples x ∈ X ′, containing X plus additional “pseudo-
counts” or biases. This is similar to the inclusion of priors in Bayesian estimation.
Formulated this way, the biases can be easily incorporated in standard IB algorithms
by adding additional pseudo-counts x′ with prior probability p(x′) = βi(c).

2.2 Constraints on relations between centroids

We want our discretization to capture correlations between strongly- and weakly-
conserved variants of the same symbol. This can be done with standard IB using



separate classes for the alternatives. However, since the distributions of other amino
acids in these two variants are likely to be related, it is preferable to define a single
shared prior for both variants, and to learn a model capturing their correlation.

Friedman et al.[1] describe multivariate information bottleneck (mIB), an extension
of information bottleneck to joint distributions over several correlated input and
cluster variables. For profile discretization, we define two compression variables
connected as in Friedman’s “parallel IB”: an amino acid class C ∈ {A,C, . . .} with
an associated prior, and a strength S ∈ {0, 1}. Since this model correlates strong
and weak variants of each category, it requires fewer priors than simple IB. It also
has fewer parameters: a multivariate model with ns strengths and nc classes has as
many categories as a univariate one with nc′ = nsnc classes, but has only ns+nc−2
free parameters for each x, instead of nsnc − 1.

3 Results

To test our method, we apply it to data from MEROPS[4]. Proteins within the same
family typically contain high-confidence alignments, those from different families
in the same clan less so. For each protein, we generate a profile from alignments
obtained from PSI–BLAST with standard parameters, and compute IB classes from
a large subset of these profiles using the priors described below. Finally, we encode
and align pairs of profiles using the learned classes, comparing the results to those
obtained both with the full profiles and with just the original sequences.

For univariate IB, we have used four types of priors reflecting biases on stability,
physical properties, and observed substitution frequencies: (1) Strongly conserved
classes, in which a single symbol is seen with S% probability. These are the only
priors used for multivariate IB. (2) Weakly conserved classes, in which a single
symbol occurs with W% probability; (S−W )% of the remaining probability mass is
distributed among symbols with non-negative log-odds of substitution. (3) Physical
trait classes, in which all symbols with the same hydrophobicity, charge, polarity,
or aromaticity occur uniformly S% of the time. (4) A uniform class, in which all
symbols occur with their background probabilities.

The choice of S and W depends upon both the data and one’s prior notions of
“strong” and “weak” conservation. Unbiased IB on a large subset of MEROPS
with several different numbers of unbiased categories yielded a mean frequency
approaching 0.7 for the most common symbol in the 20 most sharply-distributed
classes (0.59±0.13 for |C| = 52; 0.66±0.12 for |C| = 80; 0.70±0.09 for |C| = 100).
Similarly, the next 20 classes have a mean most-likely-symbol frequency around
0.4. These numbers can be seen as lower bounds on S and W . We therefore chose
S = 0.8 and W = 0.5, reflecting a bias toward stronger definitions of conservation
than those inferred from the data.

3.1 Iterative vs. Sequential IB

Slonim[7] compares several IB algorithms, concluding that best hard clustering re-
sults are obtained with a sequential method (sIB), in which elements are first as-
signed to a fixed number of clusters and then individually moved from cluster to
cluster while calculating a 1-step lookahead score, until the score converges. While
sIB is more efficient than exhaustive bottom-up clustering, it neglects information
about the best potential candidates to be assigned to a cluster, yielding slow con-
vergence. Furthermore updates are expensive, since each requires recomputing the
class centroids. Therefore instead of sIB, we use iterative IB (iIB) with hard cluster-
ing, which only recomputes the centroids after performing all updates. This reduces
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Figure 2: Stretched sequence logos for categories found by iIB (top) and sIB (bot-
tom), ordered by primary symbol and decreasing information.

the convergence time from several hours to around ten minutes.

Since Slonim argues that sIB outperforms soft iIB in part because sIB’s discrete
steps allow it to escape local optima, we expect hard iIB to have similar behavior.
To test this, we applied three complete sIB iterations initialized with categories
from multivariate iIB. sIB decreased the loss L by only about 3 percent (from 0.380
to 0.368), with most of this gain occurring in the first iteration. Also, the resulting
categories were mostly conserved up to exchanging labels, suggesting that hard iIB
finds categories similar sIB ones (see figure 2).

3.2 Information Loss and Alignments

One measure of the quality of the resulting clusters is the amount of information
about Y lost through discretization, I(Y ;X) − I(Y ;C). Figure (3b) shows the ef-
fect on information loss of varying the prior weight w with three sets of priors: 20
strongly conserved symbols and one background; these plus 20 weakly conserved
symbols; and these plus 10 categories for physical characteristics. As expected,
both decreasing the number of categories and increasing the number or weight of
priors increases information loss. However, with a fixed number of free categories,
information loss is nearly independent of prior strength, suggesting that our pri-
ors correspond to actual regularities in the data. Finally, note that despite having
fewer free parameters than the univariate models, mIB’s achieves comparable per-
formance, suggesting that our decomposition into conserved class and degree of
conservation is reasonable.

Since we are ultimately using these classes in alignments, the true cost of discretiza-
tion is best measured by the amount of change between profile and IB alignments,
and the significance of this change. The latter is important because the best path
can be very sensitive to small changes in the sequences or scoring matrix; if two rad-
ically different alignments have similar scores, neither is clearly “correct”. We can
represent an alignment as a pair of index-insertion sequences, one for each profile
sequence to be aligned (e.g. “1,2, , ,3,...” versus “1, ,2, ,3,...”). The edit distance
between these sequences for two alignments then measures how much they differ.
However, even when this distance is large, the difference between two alignments
may not be significant if both choices’ scores are nearly the same. That is, if the
optimal profile alignment’s score is only slightly lower than the optimal IB class
alignment’s score as computed with the original profiles, either might be correct.

Figure 4 shows at left both the edit distance and score change per length between
profile alignments and those using IB classes, mIB classes, and the original se-
quences with the BLOSUM62 scoring matrix. To compare the profile and sequence
alignments, profiles corresponding to gaps in the original sequences are replaced
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function of w for different groups of priors. The information loss for 52 categories
without priors is 0.359, for 10, 0.474.

Edit distance Score change
Same Superfamily

mIB 0.154± 0.182 0.086± 0.166
IB 0.170± 0.189 0.107± 0.198
BLOSUM 0.390± 0.065

Same Clan
mIB 0.124± 0.209 0.019± 0.029
IB 0.147± 0.232 0.022± 0.037
BLOSUM 0.360± 0.062

Figure 4: Left: alignment differences for IB models and sequence alignment, within
and between superfamilies. Right: ROC curve for same/different superfamily clas-
sification by alignment score.

by gaps, and resulting pairs of aligned gaps in the profile-profile alignment are re-
moved. We consider both sequences from the same family and those from other
families in the same clan, the former being more similar than the latter, and there-
fore having better alignments. Assuming the profile-profile alignment is closest to
the “true” alignment, iIB alignment significantly outperforms sequence alignment
in both cases, with mIB showing a slight additional improvement. At right is the
ROC curve for detecting superfamily relationships between profiles from different
families based on alignment scores, showing that while IB fares worse than profiles,
simple sequences perform essentially at chance.

Finally, figure 3a compares the performance of profile and IB alignment for different
sequence lengths. To use a profile alphabet for novel alignments, we must map
each input profile to the closest IB class. To be consistent with Yona[10], we use
the Jensen-Shannon (JS) distance with mixing coefficient 0.5 rather than the KL
distance optimized in creating the categories. Aligning two sequences of lengths n
and m requires computing the |C|(n+m) JS-distances between each profile and each
category, a significant improvement over the mn distance computations required for
profile-profile alignment when |C| � min(m,n)

2 . Our results show that JS distance
computations dominate running time, since IB alignment time scales linearly with
the input size, while profile alignment scales quadratically, yielding an order of
magnitude improvement for typical 500- to 1000-base-pair sequences.



4 Discussion

We have described a discrete approximation to amino acid profiles, based on min-
imizing information loss, that allows profile information to be used for alignment
and search without additional computational cost compared to simple sequence
alignment. Alignments of sequences encoded with a modest number of classes cor-
respond to the original profile alignments significantly better than alignments of the
original sequences. In addition to minimizing information loss, the classes can be
constrained to correspond to the standard amino acid representation, yielding an
intuitive, compact textual form for profile information.

Our model is useful in three ways: (1) it makes it possible to apply existing fast
discrete algorithms to arbitrary continuous sequences; (2) it models rich conditional
distribution structures; and (3) its models can incorporate a variety of class con-
straints. We can extend our approach in each of these directions. For example,
adjacent positions are highly correlated: the average entropy of a single profile is
0.99, versus 1.23 for an adjacent pair. Therefore pairs can be represented more com-
pactly than the cross-product of a single-position alphabet. More generally, we can
encode arbitrary conserved regions and still treat them symbolically for alignment
and search. Other extensions include incorporating structural information in the
input representation; assigning structural significance to the resulting categories;
and learning multivariate IB’s underlying model’s structure.
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