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Abstract

In this paper, we address the problem of statistical learning for multi-
topic text categorization (MTC), whose goal is to choose all relevant top-
ics (a label) from a given set of topics. The proposed algorithm, Max-
imal Margin Labeling (MML), treats all possible labels as independent
classes and learns a multi-class classifier on the induced multi-class cate-
gorization problem. To cope with the data sparseness caused by the huge
number of possible labels, MML combines some prior knowledge about
label prototypes and a maximal margin criterion in a novel way. Experi-
ments with multi-topic Web pages show that MML outperforms existing
learning algorithms including Support Vector Machines.

1 Multi-topic Text Categorization (MTC)

This paper addresses the problem of learning for multi-topic text categorization (MTC),
whose goal is to select all topics relevant to a text from a given set of topics. In MTC,
multiple topics may be relevant to a single text. We thus call a set of topicslabel, and say
that a text is assigned a label, not a topic.

In almost all previous text categorization studies (e.g. [1, 2]), the label is predicted by
judging each topic’s relevance to the text. In this decomposition approach, the features
specific to atopic, not alabel, are regarded as important features. However, the approach
may result in inefficient learning as we will explain in the following example.

Imagine an MTC problem of scientific papers where quantum computing papers are as-
signed multi-topic label “quantum physics (QP) & computer science (CS)”. (QP and CS
are topics in this example.) Since there are some words specific to quantum computing
such as “qbit1”, one can say that efficient MTC learners should use such words to assign
label QP & CS. However, the decomposition approach is likely to ignore these words since
they are only specific to a small portion of the whole QP or CS papers (there are many more
QP and CS papers than quantum computing papers), and therefore are not discriminative
features for either topic QP or CS.

1Qbit is a unit of quantum information, and frequently appears in real quantum computing litera-
tures, but rarely seen in other literatures.



Symbol Meaning
x(∈ R

d) A document vector
t1, t2, . . . , tl Topics
T The set of all topics
L, λ(⊂ T ) A label
L[j] The binary representation ofL. 1 if tj ∈ L and 0 otherwise.
Λ(= 2T ) The set of all possible labels
{(xi, Li)}m

i=1 Training samples

Table 1: Notation

Parametric Mixture Model (PMM) [3] adopts another approach to MTC. It is assumed in
PMM that multi-topic texts are generated from a mixture of topic-specific word distribu-
tions. Its decision on labeling is done at once, not separately for each topic. However, PMM
also has a problem with multi-topic specific features such as “qbit” since it is impossible
for texts to have such features given PMM’s mixture process.

These problems with multi-topic specific features are caused by dependency assumptions
between labels, which are explicitly or implicitly made in existing methods. To solve these
problems, we proposeMaximal Margin Labeling, which treats labels as independent
classesand learns a multi-class classifier on the induced multi-class problem.

In this paper, we first discuss why multi-class classifiers cannot be directly applied to MTC
in Section 2. We then propose MML in Section 3, and address implementation issues in
Section 4. In Section 5, MML is experimentally compared with existing methods using a
collection of multi-topic Web pages. We summarize this paper in Section 6.

2 Solving MTC as a Multi-Class Categorization

To discuss why existing multi-class classifiers do not work in MTC, we start from the
multi-class classifier proposed in [4]. Hereafter we use the notation given in Table 1. The
multi-class classifier in [4] categorizes an object into the class whose prototype vector is
the closest to the object’s feature vector. By substituting label for class, the classifier can
be written as follows.

f(x) = arg max
λ∈Λ

〈x,mλ〉X (1)

where〈, 〉X is the the inner product ofRd, andmλ ∈ R
d is the prototype vector of labelλ.

Following the similar argument as in [4], the prototype vectors are learned by solving the
following maximal margin problem2.

min
M

1

2
‖M‖2 + C

∑

1≤i≤m

∑

λ∈Λ,λ6=Li

ξλ
i

s.t. 〈xi,mLi
〉X − 〈xi,mλ〉X ≥ 1 − ξλ

i for 1 ≤ i ≤ m,∀λ 6= Li, (2)

whereM is the prototype matrix whose columns are the prototype vectors, and‖M‖ is the
Frobenius matrix norm ofM .

Note that Eq. (1) and Eq. (2) cover only training samples’ labels, but also all possible labels.
This is because the labels unseen in training samples may be relevant to test samples. In

2In Eq.(2), we penalize all violation of the margin constraints. On the other hand, Crammer
and Singer penalize only the largest violation of the margin constraint for each training sample [4].
We chose the “penalize-all” approach since it leads to an optimization problem without equality
constraints (see Eq.(7)), which is much easier to solve than the one in [4].



usual multi-class problems, such unseen labels seldom exist. In MTC, however, the number
of labels is generally very large (e.g. one of our datasets has 1,054 labels (Table 2)), and
unseen labels often exist. Thus it is necessary to consider all possible labels in Eq. (1) and
Eq. (2) since it is impossible to know which unseen labels are present in the test samples.

There are two problems with Eq. (1) and Eq. (2). The first problem is that they involve the
prototype vectors of seldom or never seen labels. Without the help of prior knowledge about
where the prototype vectors should be, it is impossible to obtain appropriate prototype
vectors for such labels. The second problem is that these equations are computationally too
demanding since they involve combinatorial maximization and summation over all possible
labels, whose number can be quite large. (For example, the number is around230 in the
datasets used in our experiments.) We will address the first problem in Section 3 and the
second problem in Section 4.

3 Maximal Margin Labeling

In this section, we incorporate some prior knowledge about the location of prototype vec-
tors into Eq. (1) and Eq. (2), and propose a novel MTC learning algorithm,Maximal
Margin Labeling (MML).

As prior knowledge, we simply assume thatthe prototype vectors of similar labels should
be placed close to each other. Based on this assumption, we first rewrite Eq. (1) to yield

f(x) = arg max
λ∈Λ

〈MT
x, eλ〉L, (3)

where〈, 〉L is the inner product ofR|Λ| and{eλ}λ∈Λ is the orthonormal basis ofR|Λ|. The
classifier of Eq. (3) can be interpreted as a two-step process: the first step is to map the
vectorx into R

|Λ| by MT , and the second step is to find the closesteλ to imageMT
x.

Then we replace{eλ}λ∈Λ with (generally) non-orthogonal vectors{φ(λ)}λ∈Λ whose ge-
ometrical configuration reflects label similarity. More formally speaking, we use vectors
{φ(λ)}λ∈Λ that satisfy the condition

〈φ(λ1), φ(λ2)〉S = S(λ1, λ2) for ∀λ1, λ2 ∈ Λ, (4)

where〈, 〉S is an inner product of the vector space spanned by{φ(λ)}λ∈Λ, andS is a
Mercer kernel [5] onΛ × Λ and is a similarity measure between labels. We call the vector
space spanned by{φ(λ)} VS .

With this replacement, MML’s classifier is written as follows.

f(x) = arg max
λ∈Λ

〈Wx, φ(λ)〉S , (5)

whereW is a linear map fromR
d to VS . W is the solution of the following problem.

min
W

1

2
‖W‖2 + C

m
∑

i=1

∑

λ∈Λ,λ6=Li

ξλ
i

s.t.

〈

Wxi,
φ(Li)−φ(λ)

‖φ(Li)−φ(λ)‖

〉

≥ 1−ξλ
i , ξλ

i ≥ 0 for 1 ≤ i ≤ m,∀λ 6= Li. (6)

Note that ifφ(λ) is replaced byeλ, Eq. (6) becomes identical to Eq. (2) except for a scale
factor. Thus Eq. (5) and Eq. (6) are natural extensions of the multi-class classifier in [4].
We call the MTC classifier of Eq. (5) and Eq. (6) “Maximal Margin Labeling (MML)”.

Figure 1 explains the margin (the inner product in Eq. (6)) in MML. The margin represents
the distance from the image of the training samplexi to the boundary between the correct
labelLi and wrong labelλ. MML optimizes the linear mapW so that the smallest margin
between all training samples and all possible labels becomes maximal, along with a penalty
C for the case that samples penetrate into the margin.



Figure 1: Maximal Margin Labeling

Dual Form For numerical computation, the following Wolfe dual form of Eq. (6) is more
convenient. (We omit its derivation due to space limits.)

max
αλ

i

∑

i,λ

αλ
i −

1

2

∑

i,λ

∑

i′,λ′

αλ
i αλ′

i′ (xi ·xi′)
S(Li, Li′)−S(Li, λ

′)−S(λ,Li′)+S(λ, λ′)

2
√

(1−S(Li, λ))(1−S(Li′ , λ′))

s.t. 0 ≤ αλ
i ≤ C for 1 ≤ i ≤ m, ∀λ 6= Li, (7)

where we denote
∑m

i=1

∑

λ∈Λ,∀λ6=Li
by

∑

i,λ, andαλ
i are the dual variables corresponding

to the first inequality constraints in Eq. (6). Note that Eq. (7) does not containφ(λ): all the
computations involvingφ can be done through the label similarityS. Additionallyxi only
appears in the inner products, and therefore can be replaced by any kernel ofx.

Using the solutionαλ
i of Eq. (7), the MML’s classifier in Eq. (5) can be written as follows.

f(x) = arg max
L∈Λ

∑

i,λ

αλ
i (x·xi)

S(Li, L)−S(λ,L)
√

2(1−S(Li, λ))
. (8)

Label Similarity 3 As examples of label similarity, we use two similarity measures: Dice
measure and cosine measure.

Dice measure4 SD(λ1, λ2) =
2|λ1∩λ2|
|λ1|+|λ2|

=
2
∑l

j=1 λ1[j]λ2[j]
∑l

j=1 λ1[j] +
∑l

j=1 λ2[j]
. (9)

Cosine measure SC(λ1, λ2) =
|λ1 ∩ λ2|

√

|λ1|
√

|λ2|
=

∑l

j=1 λ1[j]λ2[j]
√

∑l

j=1 λ1[j]
√

∑l

j=1 λ2[j]
.(10)

4 Efficient Implementation

4.1 Approximation in Learning

Eq. (7) contains the sum over all possible labels. As the number of topics (l) increases, this
summation rapidly becomes intractable since|Λ| grows exponentially as2l. To circumvent

3The following discussion is easily extended to include the case that bothλ1 andλ2 are empty
although we do not discuss the case due to space limits.



this problem, we approximate the sum over all possible labelsin Eq. (7) by the partial sum
overαλ

i of |(A ∩Bc) ∪ (Ac ∩B)|=1 and set all the otherαλ
i to zero. This approximation

reduces the burden of the summation quite a lot: the number of summands is reduced from
2l to l, which is a huge reduction especially when many topics exist.

To understand the rationale behind the approximation, first note thatαλ
i is the dual variable

corresponding to the first inequality constraint (the margin constraint) in Eq. (7). Thusαλ
i

is non-zero if and only ifWxi falls in the margin betweenφ(Li) andφ(λ). We assume
that this margin violation mainly occurs whenφ(λ) is “close” toφ(Li), i.e. |(A ∩ Bc) ∪
(Ac ∩ B)|=1. If this assumption holds well, the proposed approximation of the sum will
lead to a good approximation of the exact solution.

4.2 Polynomial Time Algorithms for Classification

The classification of MML (Eq. (8)) involves the combinatorial maximization over all pos-
sible labels, so it can be a computationally demanding process. However, efficient classifi-
cation algorithms are available when either the cosine measure or dice measure is used as
label similarity.

Eq. (8) can be divided into the subproblems by the number of topics in a label.

f(x) = arg max
L∈{L̂1,L̂2,...,L̂l}

g(x, L), (11)

L̂n = arg max
L∈Λ,|L|=n

g(x, L). (12)

whereg(x) is

g(x, L) =

l
∑

j=1

cn[j]L[j],

cn[j] =











∑

i,λ

αλ

i
(x·xi)√

2(1−SD(Li,λ))
.
(

2Li[j]
|Li|+n

− 2λ[j]
|λ|+n

)

if SD is used.

∑

i,λ

αλ

i
(x·xi)√

2(1−SC(Li,λ))

(

Li[j]√
|Li|

√
n
− λ[j]√

|λ|√n

)

if SC is used.
(13)

Heren = |L|. The computational cost of Eq. (13) for allj is O(nαl) (nα is the number of
non-zeroα), and that of Eq. (12) isO(l log l). Thus the total cost of the classification by
Eq. (11) isO(nαl2 + l2 log l). On the other hand,nα is O(ml) under the approximation
described above. Therefore, the classification can be done withinO(ml3) computational
steps, which is a significant reduction from the case that the brute force search is used in
Eq. (8).

5 Experiments

In this section, we report experiments that compared MML to PMM [3], SVM5 [6], and
BoosTexter [2] using a collection of Web pages. We used a normalized linear kernel
k(x,x′) = x · x′/‖x‖‖x′‖ in MML and SVM. As for BoosTexter, “real abstaining Ad-
aBoost.MH” was used as the weak learner.

5.1 Experimental Setup

The datasets used in our experiment represent the Web page collection used in [3] (Ta-
ble 2). The Web pages were collected through the hyperlinks from Yahoo!’s top directory

5For each topic, an SVM classifier is trained to predict whether the topic is relevant (positive) or
irrelevant (negative) to input doucments.



Dataset Name (Abbrev.) #Text #Voc #Tpc #Lbl Label Size Frequency (%)
1 2 3 4 ≥5

Arts & Humanities (Ar) 7,484 23,146 26 599 55.6 30.5 9.7 2.8 1.4
Business & Economy (Bu)11,214 21,924 30 233 57.6 28.8 11.0 1.7 0.8
Computers & Internet (Co)12,444 34,096 33 428 69.8 18.2 7.8 3.0 1.1
Education (Ed) 12,030 27,534 33 511 66.9 23.4 7.3 1.9 0.6
Entertainment (En) 12,730 32,001 21 337 72.3 21.1 4.5 1.0 1.1
Health (He) 9,205 30,605 32 335 53.2 34.0 9.5 2.4 0.9
Recreation (Rc) 12,828 30,324 22 530 69.2 23.1 5.6 1.4 0.6
Reference (Rf) 8,027 39,679 33 275 85.5 12.6 1.5 0.3 0.1
Science (Si) 6,428 37,187 40 457 68.0 22.3 7.3 1.9 0.5
Social Science (SS) 12,111 52,350 39 361 78.4 17.0 3.7 0.7 0.3
Society & Culture (SC) 14,512 31,802 27 1054 59.6 26.1 9.2 2.9 2.2

Table 2: A summary of the web page datasets. “#Text” is the number of texts in the dataset,
“#Voc” the number of vocabularies (i.e. features), “#Tpc” the number of topics, “#Lbl” the
number of labels, and “Label Size Frequency” is the relative frequency of each label size.
(Label size is the number of topics in a label.)

Method Feature Type Parameter
MML TF, TF×IDF C = 0.1, 1, 10
PMM TF Model1, Model2
SVM TF, TF×IDF C = 0.1, 1, 10
Boost Binary R={2, 4, 6, 8, 10}×10

3

Table 3: Candidate feature types and learning parameters. (Ris the number of weak hy-
potheses.) The underlined fetures and parameters were selected for the evaluation with the
test data.

(www.yahoo.com), and then divided into 11 datasets by Yahoo’s top category. Each
page is labeled with the Yahoo’ssecond level sub-categories from which the page is hy-
perlinked. (Thus, the sub-categories aretopics in our term.) See [3] for more details about
the collection. Then the Web pages were converted into three types of feature vectors: (a)
Binary vectors, where each feature indicates the presence (absence) of a term by 1 (0); (b)
TF vectors, where each feature is the number of appearances of a term (term frequency);
and (c) TF×IDF vectors, where each feature is the product of term frequency and inverse
document frequency [7].

To select the best combinations of feature types and learning parameters such as the penalty
C for MML, the learners were trained on 2,000 Web pages with all combinations of fea-
ture and parameter listed in Table 3, and then were evaluated by labeling F-measure on
independently drawn development data. The combinations which achieve the best labeling
F-measures (underlined in Table 3) were used in the following experiments.

5.2 Evaluation Measures

We used three measures to evaluate labeling performance: labeling F-measure, exact match
ratio, and retrieval F-measure. In the following definitions,{Lpred

i }n
i=1 and{Ltrue

i }n
i=1

mean the predicted labels and the true labels, respectively.

Labeling F-measure Labeling F-measureFL evaluates the average labeling performance
while taking partial match into account.

FL =
1

n

n
∑

i=1

2|Lpred
i ∩ Ltrue

i |
|Lpred

i | + |Ltrue
i |

=
1

n

n
∑

i=1

2
∑l

j=1 Lpred
i [j]Ltrue

i [j]
∑l

j=1(L
pred
i [j] + Ltrue

i [j])
. (14)



Data- Labeling F-measure Exact Match Ratio Retrieval F-measure
set MD MC PM SV BO MD MC PM SV BO MD MC PM SV BO
Ar 0.55 0.44 0.50 0.46 0.38 0.44 0.32 0.21 0.29 0.22 0.30 0.26 0.24 0.29 0.22
Bu 0.80 0.81 0.75 0.76 0.75 0.63 0.62 0.48 0.57 0.53 0.25 0.27 0.20 0.29 0.20
Co 0.62 0.59 0.61 0.55 0.47 0.51 0.46 0.35 0.41 0.34 0.27 0.25 0.19 0.30 0.17
Ed 0.56 0.43 0.51 0.48 0.37 0.45 0.34 0.19 0.30 0.23 0.25 0.23 0.21 0.25 0.16
En 0.64 0.52 0.61 0.54 0.49 0.55 0.44 0.31 0.42 0.36 0.37 0.33 0.30 0.35 0.29
He 0.74 0.74 0.66 0.67 0.60 0.58 0.53 0.34 0.47 0.39 0.35 0.35 0.23 0.35 0.26
Rc 0.63 0.46 0.55 0.49 0.44 0.54 0.38 0.25 0.37 0.33 0.47 0.39 0.36 0.40 0.33
Rf 0.67 0.58 0.63 0.56 0.50 0.60 0.51 0.39 0.49 0.41 0.29 0.25 0.24 0.25 0.16
Si 0.61 0.54 0.52 0.47 0.39 0.52 0.43 0.22 0.36 0.28 0.37 0.35 0.28 0.31 0.19
SS 0.73 0.71 0.66 0.64 0.59 0.65 0.60 0.45 0.55 0.49 0.36 0.35 0.18 0.31 0.15
SC 0.60 0.55 0.54 0.49 0.44 0.44 0.40 0.21 0.32 0.27 0.29 0.28 0.25 0.26 0.20
Avg 0.65 0.58 0.59 0.56 0.49 0.54 0.46 0.31 0.41 0.35 0.32 0.30 0.24 0.31 0.21

Table 4: The performance comparison by labeling F-measure (left), exact match ratio (mid-
dle) and retrieval F-measure (right). Thebold figures are the best ones among the five
methods, and the underlined figures the second best ones. MD, MC, PM, SV, and BO
represent MML withSD, MML with SC , PMM, SVM and BoosTexter, respectively.

Exact Match Ratio Exact match ratioEX counts only exact matches between the pre-
dicted label and the true label.

EX =
1

n

n
∑

i=1

I[Lpred
i = Ltrue

i ], (15)

whereI[S] is 1 if the statementS is true and 0 otherwise.

Retrieval F-measure6 For real tasks, it is also important to evaluate retrieval perfor-
mance, i.e. how accurately classifiers can find relevant texts for a given topic. Retrieval
F-measureFR measures the average retrieval performance over all topics.

FR =
1

l

l
∑

j=1

2
∑n

i=1 Lpred
i [j]Ltrue

i [j]
∑n

i=1(L
pred
i [j] + Ltrue

i [j])
. (16)

5.3 Results

First we trained the classifiers with randomly chosen 2,000 samples. We then calculated
the three evaluation measures for 3,000 other randomly chosen samples. This process was
repeated five times, and the resulting averaged values are shown in Table 4. Table 4 shows
that the MMLs with Dice measure outperform other methods in labeling F-measure and
exact match ratio. The MMLs also show the best performance with regard to retrieval F-
measure although the margins to the other methods are not as large as observed in labeling
F-measure and exact match ratio. Note that no classifier except MML with Dice measure
achieves good labeling on all the three measures. For example, PMM shows high labeling
F-measures, but its performance is rather poor when evaluated in retrieval F-measure.

As the second experiment, we evaluated the classifiers trained with 250–2000 training sam-
ples on the same test samples. Figure 2 shows each measure averaged over all datasets. It is
observed that the MMLs show high generalization even when training data is small. An in-
teresting point is that MML with cosine measure achieves rather high labeling F-measures
and retrieval F-measure with training data of smaller size. Such high-performace, however,
does not continue when trained on larger data.

6FR is called “the macro average of F-measures” in the text categorization community.



Figure 2: The learning curve of labeling F-measure (left), exact match ratio (middle) and
retrieval F-measure (right). MD, MC, PM, SV, BO mean the same as in Table 4.

6 Conclusion

In this paper, we proposed a novel learning algorithm for multi-topic text categorization.
The algorithm, Maximal Margin Labeling, embeds labels (sets of topics) into a similarity-
induced vector space, and learns a large margin classifier in the space. To overcome the
demanding computational cost of MML, we provide an approximation method in learning
and efficient classification algorithms. In experiments on a collection of Web pages, MML
outperformed other methods including SVM and showed better generalization.
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