
PAC-Bayes Learning of Conjunctions and
Classification of Gene-Expression Data

Mario Marchand
IFT-GLO, Université Laval

Sainte-Foy (QC) Canada, G1K-7P4
Mario.Marchand@ift.ulaval.ca

Mohak Shah
SITE, University of Ottawa

Ottawa, Ont. Canada,K1N-6N5
mshah@site.uottawa.ca

Abstract

We propose a “soft greedy” learning algorithm for building small
conjunctions of simple threshold functions, called rays, defined on
single real-valued attributes. We also propose a PAC-Bayes risk
bound which is minimized for classifiers achieving a non-trivial
tradeoff between sparsity (the number of rays used) and the mag-
nitude of the separating margin of each ray. Finally, we test the
soft greedy algorithm on four DNA micro-array data sets.

1 Introduction

An important challenge in the problem of classification of high-dimensional data
is to design a learning algorithm that can often construct an accurate classifier
that depends on the smallest possible number of attributes. For example, in the
problem of classifying gene-expression data from DNA micro-arrays, if one can find
a classifier that depends on a small number of genes and that can accurately predict
if a DNA micro-array sample originates from cancer tissue or normal tissue, then
there is hope that these genes, used by the classifier, may be playing a crucial role
in the development of cancer and may be of relevance for future therapies.

The standard methods used for classifying high-dimensional data are often charac-
terized as either “filters” or “wrappers”. A filter is an algorithm used to “filter out”
irrelevant attributes before using a base learning algorithm, such as the support
vector machine (SVM), which was not designed to perform well in the presence of
many irrelevant attributes. A wrapper, on the other hand, is used in conjunction
with the base learning algorithm: typically removing recursively the attributes that
have received a small “weight” by the classifier obtained from the base learner.
The recursive feature elimination method is an example of a wrapper that was used
by Guyon et al. (2002) in conjunction with the SVM for classification of micro-array
data. For the same task, Furey et al. (2000) have used a filter which consists of
ranking the attributes (gene expressions) as function of the difference between the
positive-example mean and the negative-example mean. Both filters and wrappers
have sometimes produced good empirical results but they are not theoretically justi-
fied. What we really need is a learning algorithm that has provably good guarantees
in the presence of many irrelevant attributes. One of the first learning algorithms
proposed by the COLT community has such a guarantee for the class of conjunc-

tions: if there exists a conjunction, that depends on r out of the n input attributes
and that correctly classifies a training set of m examples, then the greedy covering
algorithm of Haussler (1988) will find a conjunction of at most r ln m attributes that
makes no training errors. Note the absence of dependence on the number n of input
attributes. In contrast, the mistake-bound of the Winnow algorithm (Littlestone,
1988) has a logarithmic dependence on n and will build a classifier on all the n
attributes.

Motivated by this theoretical result and by the fact that simple conjunctions of gene
expression levels seems an interesting learning bias for the classification of DNA
micro-arrays, we propose a “soft greedy” learning algorithm for building small con-
junctions of simple threshold functions, called rays, defined on single real-valued
attributes. We also propose a PAC-Bayes risk bound which is minimized for classi-
fiers achieving a non-trivial tradeoff between sparsity (the number of rays used) and
the magnitude of the separating margin of each ray. Finally, we test the proposed
soft greedy algorithm on four DNA micro-array data sets.

2 Definitions

The input space X consists of all n-dimensional vectors x = (x1, . . . , xn) where
each real-valued component xi ∈ [Ai, Bi] for i = 1, . . . n. Hence, Ai and Bi are,
respectively, the a priori lower and upper bounds on values for xi. The output
space Y is the set of classification labels that can be assigned to any input vector
x ∈ X . We focus here on binary classification problems. Thus Y = {0, 1}. Each
example z = (x, y) is an input vector x with its classification label y ∈ Y. In the
probably approximately correct (PAC) setting, we assume that each example z is
generated independently according to the same (but unknown) distribution D. The
(true) risk R(f) of a classifier f : X → Y is defined to be the probability that f
misclassifies z on a random draw according to D:

R(f) def= Pr(x,y)∼D (f(x) 6= y) = E(x,y)∼DI(f(x) 6= y)

where I(a) = 1 if predicate a is true and 0 otherwise. Given a training set
S = (z1, . . . , zm) of m examples, the task of a learning algorithm is to construct
a classifier with the smallest possible risk without any information about D. To
achieve this goal, the learner can compute the empirical risk RS(f) of any given
classifier f according to:

RS(f) def=
1
m

m∑

i=1

I(f(xi) 6= yi)
def= E(x,y)∼SI(f(x) 6= y)

We focus on learning algorithms that construct a conjunction of rays from a training
set. Each ray is just a threshold classifier defined on a single attribute (component)
xi. More formally, a ray is identified by an attribute index i ∈ {1, . . . , n}, a threshold
value t ∈ [Ai, Bi], and a direction d ∈ {−1, +1} (that specifies whether class 1 is on
the largest or smallest values of xi). Given any input example x, the output ri

td(x)
of a ray is defined as:

ri
td(x) def=

{
1 if (xi − t)d > 0
0 if (xi − t)d ≤ 0

To specify a conjunction of rays we need first to list all the attributes who’s ray
is present in the conjunction. For this purpose, we use a vector i def= (i1, . . . , i|i|)

of attribute indices ij ∈ {1, . . . , n} such that i1 < i2 < . . . < i|i| where |i| is the
number of indices present in i (and thus the number of rays in the conjunction) 1.

To complete the specification of a conjunction of rays, we need a vector t =
(ti1 , ti2 , . . . , ti|i|) of threshold values and a vector of d = (di1 , di2 , . . . , di|i|) of di-
rections where ij ∈ {1, . . . , n} for j ∈ {1, . . . , |i|}. On any input example x, the
output Ci

td(x) of a conjunction of rays is given by:

Ci
td(x) def=

{
1 if rj

tjdj
(x) = 1 ∀j ∈ i

0 if ∃j ∈ i : rj
tjdj

(x) = 0

Finally, any algorithm that builds a conjunction can be used to build a disjunction
just by exchanging the role of the positive and negative labelled examples. Due to
lack of space, we describe here only the case of a conjunction.

3 A PAC-Bayes Risk Bound

The PAC-Bayes approach, initiated by McAllester (1999), aims at providing PAC
guarantees to “Bayesian” learning algorithms. These algorithms are specified in
terms of a prior distribution P over a space of classifiers that characterizes our
prior belief about good classifiers (before the observation of the data) and a pos-
terior distribution Q (over the same space of classifiers) that takes into account
the additional information provided by the training data. A remarkable result that
came out from this line of research, known as the “PAC-Bayes theorem”, provides
a tight upper bound on the risk of a stochastic classifier called the Gibbs classifier .
Given an input example x, the label GQ(x) assigned to x by the Gibbs classifier
is defined by the following process. We first choose a classifier h according to the
posterior distribution Q and then use h to assign the label h(x) to x. The risk of
GQ is defined as the expected risk of classifiers drawn according to Q:

R(GQ) def= Eh∼QR(h) = Eh∼QE(x,y)∼DI(f(x) 6= y)

The PAC-Bayes theorem was first proposed by McAllester (2003). The version
presented here is due to Seeger (2002) and Langford (2003).

Theorem 1 Given any space H of classifiers. For any data-independent prior
distribution P over H and for any (possibly data-dependent) posterior distribution
Q over H, with probability at least 1 − δ over the random draws of training sets S
of m examples:

kl(RS(GQ)‖R(GQ)) ≤ KL(Q‖P) + ln m+1
δ

m

where KL(Q‖P) is the Kullback-Leibler divergence between distributions2 Q and P :

KL(Q‖P) def= Eh∼Q ln
Q(h)
P (h)

and where kl(q‖p) is the Kullback-Leibler divergence between the Bernoulli distribu-
tions with probabilities of success q and p:

kl(q‖p) def= q ln
q

p
+ (1− q) ln

1− q

1− p
for q < p

1Although it is possible to use up to two rays on any attribute, we limit ourselves here
to the case where each attribute can be used for only one ray.

2Here Q(h) denotes the probability density function associated to Q, evaluated at h.

The bound given by the PAC-Bayes theorem for the risk of Gibbs classifiers can be
turned into a bound for the risk of Bayes classifiers in the following way. Given a
posterior distribution Q, the Bayes classifier BQ performs a majority vote (under
measure Q) of binary classifiers in H. When BQ misclassifies an example x, at least
half of the binary classifiers (under measure Q) misclassifies x. It follows that the
error rate of GQ is at least half of the error rate of BQ. Hence R(BQ) ≤ 2R(GQ).

In our case, we have seen that ray conjunctions are specified in terms of a mixture
of discrete parameters i and d and continuous parameters t. If we denote by Pi,d(t)
the probability density function associated with a prior P over the class of ray
conjunctions, we consider here priors of the form:

Pi,d(t) =
1(
n
|i|

)p(|i|) 1
2|i|

∏

j∈i

1
Bj −Aj

; ∀tj ∈ [Aj , Bj]

If I denotes the set of all 2n possible attribute index vectors and Di denotes de set
of all 2|i| binary direction vectors d of dimension |i|, we have that:

∑

i∈I

∑

d∈Di

∏

j∈i

∫ Bj

Aj

dtjPi,d(t) = 1

whenever
∑n

e=0 p(e) = 1.

The reasons motivating this choice for the prior are the following. The first two
factors come from the belief that the final classifier, constructed from the group of
attributes specified by i, should depend only on the number |i| of attributes in this
group. If we have complete ignorance about the number of rays the final classifier is
likely to have, we should choose p(e) = 1/(n + 1) for e ∈ {0, 1, . . . , n}. However, we
should choose a p that decreases as we increase e if we have reasons to believe that
the number of rays of the final classifier will be much smaller than n. The third
factor of Pi,d(t) gives equal prior probabilities for each of the two possible values of
direction dj . Finally, for each ray, every possible threshold value t should have the
same prior probability of being chosen if we do not have any prior knowledge that
would favor some values over the others. Since each attribute value xi is constrained,
a priori, to be in [Ai, Bi], we have chosen a uniform probability density on [Ai, Bi]
for each ti such that i ∈ i. This explains the last factors of Pi,d(t).

Given a training set S, the learner will choose an attribute group i and a direction
vector d. For each attribute xi ∈ [Ai, Bi] : i ∈ i, a margin interval [ai, bi] ⊆ [Ai, Bi]
will also be chosen by the learner. A deterministic ray-conjunction classifier is then
specified by choosing the thresholds values ti ∈ [ai, bi]. It is tempting at this point
to choose ti = (ai + bi)/2 ∀i ∈ i (i.e., in the middle of each interval). However, we
will see shortly that the PAC-Bayes theorem offers a better guarantee for another
type of deterministic classifier.

The Gibbs classifier is defined with a posterior distribution Q having all its weight
on the same i and d as chosen by the learner but where each ti is uniformly chosen
in [ai, bi]. The KL divergence between this posterior Q and the prior P is then
given by:

KL(Q‖P) =
∏

j∈i

∫ bj

aj

dtj
bj − aj

ln
(∏

i∈i(bi − ai)−1

Pi,d(t)

)

= ln
(

n

|i|
)

+ ln
(

1
p(|i|)

)
+ |i| ln(2) +

∑

i∈i

ln
(

Bi −Ai

bi − ai

)

Hence, we see that the KL divergence between the “continuous components” of Q
and P (given by the last term) vanishes when [ai, bi] = [Ai, Bi] ∀i ∈ i. Furthermore,

the KL divergence between the “discrete components” of Q and P is small for small
values of |i| (whenever p(|i|) is not too small). Hence, this KL divergence between
our choices for Q and P exhibits a tradeoff between margins (large values of bi−ai)
and sparsity (small value of |i|) for Gibbs classifiers. According to Theorem 1,
the Gibbs classifier with the smallest guarantee of risk R(GQ) should minimize a
non trivial combination of KL(Q‖P) (margins-sparsity tradeoff) and empirical risk
RS(GQ).

Since the posterior Q is identified by an attribute group vector i, a direction vector
d, and intervals [ai, bi] ∀i ∈ i, we will refer to the Gibbs classifier GQ by Gid

ab
where a and b are the vectors formed by the unions of ais and bis respectively.
We can obtain a closed-form expression for RS(Gid

ab) by first considering the risk
R(x,y)(Gid

ab) on a single example (x, y) since RS(Gid
ab) = E(x,y)∼SR(x,y)(Gid

ab). From
our definition for Q, we find that:

R(x,y)(Gid
ab) = (1− 2y)

[∏

i∈i

σdi

ai,bi
(xi)− y

]
(1)

where we have used the following piece-wise linear functions:

σ+
a,b(x) def=





0 if x < a
x−a
b−a if a ≤ x ≤ b
1 if b < x

; σ−a,b(x) def=





1 if x < a
b−x
b−a if a ≤ x ≤ b
0 if b < x

(2)

Hence we notice that R(x,1)(Gid
ab) = 1 (and R(x,0)(Gid

ab) = 0) whenever there exist
i ∈ i : σdi

ai,bi
(xi) = 0. This occurs iff there exists a ray which outputs 0 on x. We

can also verify that the expression for R(x,y)(Ci
td) is identical to the expression for

R(x,y)(Gid
ab) except that the piece-wise linear functions σdi

ai,bi
(xi) are replaced by

the indicator functions I((xi − ti)di > 0).

The PAC-Bayes theorem provides a risk bound for the Gibbs classifier Gid
ab. Since

the Bayes classifier Bid
ab just performs a majority vote under the same posterior

distribution as the one used by Gid
ab, we have that Bid

ab(x) = 1 iff the probability
that Gid

ab classifies x as positive exceeds 1/2. Hence, it follows that

Bid
ab(x) =

{
1 if

∏
i∈i σ

di

ai,bi
(xi) > 1/2

0 if
∏

i∈i σ
di

ai,bi
(xi) ≤ 1/2

(3)

Note that Bid
ab has an hyperbolic decision surface. Consequently, Bid

ab is not repre-
sentable as a conjunction of rays. There is, however, no computational difficulty at
obtaining the output of Bid

ab(x) for any x ∈ X .

From the relation between Bid
ab and Gid

ab, it also follows that R(x,y)(Bid
ab) ≤

2R(x,y)(Gid
ab) for any (x, y). Consequently, R(Bid

ab) ≤ 2R(Gid
ab). Hence, we have

our main theorem:

Theorem 2 Given all our previous definitions, for any δ ∈ (0, 1], and for any p
satisfying

∑n
e=0 p(e) = 1, we have:

PrS∼Dm

(
∀i,d,a,b : R(Gid

ab) ≤ sup
{

ε : kl(RS(Gid
ab)‖ε) ≤ 1

m

[
ln

(
n

|i|
)

+

+ |i| ln(2) + ln
(

1
p(|i|)

)
+

∑

i∈i

ln
(

Bi −Ai

bi − ai

)
+ ln

m + 1
δ

]})
≥ 1− δ

Furthermore: R(Bid
ab) ≤ 2R(Gid

ab) ∀i,d,a,b.

4 A Soft Greedy Learning Algorithm

Theorem 2 suggests that the learner should try to find the Bayes classifier Bid
ab that

uses a small number of attributes (i.e., a small |i|), each with a large separating
margin (bi − ai), while keeping the empirical Gibbs risk RS(Gid

ab) at a low value.
To achieve this goal, we have adapted the greedy algorithm for the set covering
machine (SCM) proposed by Marchand and Shawe-Taylor (2002). It consists of
choosing the feature (here a ray) i with the largest utility Ui where:

Ui = |Qi| − p|Ri|
where Qi is the set of negative examples covered (classified as 0) by feature i, Ri

is the set of positive examples misclassified by this feature, and p is a learning
parameter that gives a penalty p for each misclassified positive example. Once the
feature with the largest Ui is found, we remove Qi and Pi from the training set S
and then repeat (on the remaining examples) until either no more negative examples
are present or that a maximum number s of features has been reached.

In our case, however, we need to keep the Gibbs risk on S low instead of the risk
of a deterministic classifier. Since the Gibbs risk is a “soft measure” that uses the
piece-wise linear functions σd

a,b instead of the “hard” indicator functions, we need
a “softer” version of the utility function Ui. Indeed, a negative example that falls
in the linear region of a σd

a,b is in fact partly covered. Following this observation,
let k be the vector of indices of the attributes that we have used so far for the
construction of the classifier. Let us first define the covering value C(Gkd

ab) of Gkd
ab

by the “amount” of negative examples assigned to class 0 by Gkd
ab :

C(Gkd
ab) def=

∑

(x,y)∈S

(1− y)


1−

∏

j∈k

σ
dj

aj ,bj
(xj)




We also define the positive-side error E(Gkd
ab) of Gkd

ab as the “amount” of positive
examples assigned to class 0 :

E(Gkd
ab) def=

∑

(x,y)∈S

y


1−

∏

j∈k

σ
dj

aj ,bj
(xj)




We now want to add another ray on another attribute, call it i, to obtain a new
vector k′ containing this new attribute in addition to those present in k. Hence, we
now introduce the covering contribution of ray i as:

Ckd
ab (i) def= C(Gk′d′

a′b′)− C(Gkd
ab) =

∑

(x,y)∈S

(1− y)
[
1− σdi

ai,bi
(xi)

] ∏

j∈k

σ
dj

aj ,bj
(xj)

and the positive-side error contribution of ray i as:

Ekd
ab (i) def= E(Gk′d′

a′b′)− E(Gkd
ab) =

∑

(x,y)∈S

y
[
1− σdi

ai,bi
(xi)

] ∏

j∈k

σ
dj

aj ,bj
(xj)

Typically, the covering contribution of ray i should increase its “utility” and its
positive-side error should decrease it. Moreover, we want to decrease the “utility”
of ray i by an amount which would become large whenever it has a small separating
margin. Our expression for KL(Q‖P) suggests that this amount should be pro-
portional to ln((Bi − Ai)/(bi − ai)). Furthermore we should compare this margin
term with the fraction of the remaining negative examples that ray i has covered

(instead of the absolute amount of negative examples covered). Hence the cover-
ing contribution Ckd

ab (i) of ray i should be divided by the amount N kd
ab of negative

examples that remains to be covered before considering ray i:

N kd
ab

def=
∑

(x,y)∈S

(1− y)
∏

j∈k

σ
dj

aj ,bj
(xj)

which is simply the amount of negative examples that have been assigned to class 1
by Gkd

ab . If P denotes the set of positive examples, we define the utility Ukd
ab (i) of

adding ray i to Gkd
ab as:

Ukd
ab (i) def=

Ckd
ab (i)
N kd

ab

− p
Ekd
ab (i)
|P | − η ln

Bi −Ai

bi − ai

where parameter p represents the penalty of misclassifying a positive example and
η is another parameter that controls the importance of having a large margin.
These learning parameters can be chosen by cross-validation. For fixed values of
these parameters, the “soft greedy” algorithm simply consists of adding, to the
current Gibbs classifier, a ray with maximum added utility until either the maximum
number s of rays has been reached or that all the negative examples have been
(totally) covered. It is understood that, during this soft greedy algorithm, we
can remove an example (x, y) from S whenever it is totally covered. This occurs
whenever

∏
j∈k σ

dj

aj ,bj
(xj) = 0.

5 Results for Classification of DNA Micro-Arrays

We have tested the soft greedy learning algorithm on the four DNA micro-array data
sets shown in Table 1. The colon tumor data set (Alon et al., 1999) provides the
expression levels of 40 tumor and 22 normal colon tissues measured for 6500 human
genes. The ALL/AML data set (Golub et al., 1999) provides the expression levels
of 7129 human genes for 47 samples of patients with acute lymphoblastic leukemia
(ALL) and 25 samples of patients with acute myeloid leukemia (AML). The B MD
and C MD data sets (Pomeroy et al., 2002) are micro-array samples containing
the expression levels of 6817 human genes. Data set B contains 25 classic and 9
desmoplastic medulloblastomas whereas data set C contains 39 medulloblastomas
survivors and 21 treatment failures (non-survivors).

We have compared the soft greedy learning algorithm with a linear-kernel soft-
margin SVM trained both on all the attributes (gene expressions) and on a subset
of attributes chosen by the filter method of Golub et al. (1999). It consists of ranking
the attributes as function of the difference between the positive-example mean and
the negative-example mean and then use only the first ` attributes. The resulting
learning algorithm, named SVM+gs in Table 1, is basically the one used by Furey
et al. (2000) for the same task. Guyon et al. (2002) claimed obtaining better results
with the recursive feature elimination method but, as pointed out by Ambroise and
McLachlan (2002), their work contained a methodological flaw and, consequently,
the superiority of this wrapper method is questionable.

Each algorithm was tested with the 5-fold cross validation (CV) method. Each of
the five training sets and testing sets was the same for all algorithms. The learning
parameters of all algorithms and the gene subsets (for SVM+gs) were chosen from
the training sets only. This was done by performing a second (nested) 5-fold CV
on each training set. For the gene subset selection procedure of SVM+gs, we have
considered the first ` = 2i genes (for i = 0, 1, . . . , 12) ranked according to the
criterion of Golub et al. (1999) and have chosen the i value that gave the smallest
5-fold CV error on the training set.

Data Set SVM SVM+gs Soft Greedy
Name #exs errs errs size ratio size G-errs B-errs Bound
Colon 62 12 11 256 0.42 1 12 9 18
B MD 34 12 6 32 0.10 1 6 6 20
C MD 60 29 21 1024 0.077 3 24 22 40
ALL/AML 72 18 10 64 0.002 2 19 17 38

Table 1: DNA micro-array data sets and results.

For each algorithm, the “errs” columns of Table 1 contain the 5-fold CV error
expressed as the sum of errors over the five testing sets and the “size” columns
contain the number of attributes used by the classifier averaged over the five testing
sets. The “G-err” and “B-err” columns refer to the Gibbs and Bayes error rates.
The “ratio” column refers to the average value of (bi − ai)/(Bi − Ai) obtained for
the rays used by classifiers and the “bound” column refers to the average risk bound
of Theorem 2 multiplied by the total number of examples. We see that the gene
selection filter generally improves the error rate of SVM and that the Bayes error
rate is slightly better than the Gibbs error rate. Finally, the error rates of Bayes
and SVM+gs are competitive but the number of genes selected by the soft greedy
algorithm is always much smaller.

References

U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J. Levine. Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays. PNAS USA, 96:6745–6750, 1999.

C. Ambroise and G. J. McLachlan. Selection bias in gene extraction on the basis of
microarray gene-expression data. Proc. Natl. Acad. Sci. USA, 99:6562–6566, 2002.

T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haus-
sler. Support vector machine classification and validation of cancer tissue samples using
microarray expression data. Bioinformatics, 16:906–914, 2000.

T.R. Golub, D.K. Slonim, and Many More Authors. Molecular classification of cancer:
class discovery and class prediction by gene expression monitoring. Science, 286:531–
537, 1999.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Machine Learning, 46:389–422, 2002.

D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learning
framework. Artificial Intelligence, 36:177–221, 1988.

John Langford. Tutorial on practical prediction theory for classification.
http://hunch.net/~jl/projects/prediction_bounds/tutorial/tutorial.ps, 2003.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2(4):285–318, 1988.

Mario Marchand and John Shawe-Taylor. The set covering machine. Journal of Machine
Learning Reasearch, 3:723–746, 2002.

David McAllester. Some PAC-Bayesian theorems. Machine Learning, 37:355–363, 1999.

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51:5–21,
2003. A priliminary version appeared in proceedings of COLT’99.

S. L. Pomeroy, P. Tamayo, and Many More Authors. Prediction of central nervous system
embryonal tumour outcome based on gene expression. Nature, 415:436–442, 2002.

Matthias Seeger. PAC-Bayesian generalization bounds for gaussian processes. Journal of
Machine Learning Research, 3:233–269, 2002.

