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Abstract

In this paper we obtain convergence bounds for the concentration of
Bayesian posterior distributions (around the true distribution) using a
novel method that simplifies and enhances previous results. Based on the
analysis, we also introduce a generalized family of Bayesian posteriors,
and show that the convergence behavior of these generalized posteriors is
completely determined by the local prior structure around the true distri-
bution. This important and surprising robustness property does not hold
for the standard Bayesian posterior in that it may not concentrate when
there exist “bad” prior structures even at places far away from the true
distribution.

1 Introduction

Consider a sample space and a measura on X (with respect to some-field). In
statistical inference, the nature picks a probability meaguoa X’ which is unknown. We
assume thaf) has a density with respect to\. In the Bayesian paradigm, the statistician
considers a set of probability densitjgs|¢) (with respect to\ on X’) indexed byd € T', and
makes an assumptidthat the true density can be represented ag|#) with 6§ randomly
picked fromI" according to a prior distributiom onI". Throughout the paper, all quantities
appearing in the derivations are assumed to be measurable.

Given a set of sample¥ = {X;,...,X,,} € X™, where eachX; independently drawn

from (the unknown distribution}), the optimal Bayesian method can be derived as the
optimal inference with respect to the posterior distribution. Although a Bayesian procedure
is optimal only when the nature picks the same prior as the statistician (which is very
unlikely), it is known that procedures with desirable properties from the frequentist point
of view (such minimaxity and admissibility) are often Bayesian [6]. From a theoretical
point of view, it is necessary to understand the behavior of Bayesian methods without
the assumption that the nature picks the same prior as the statistician. In this respect,
the most fundamental issue in Bayesian analysis is whether the Bayesian inference based
on the posterior distribution will converge to the corresponding inference of the true (but

In this paper, we view the Bayesian paradigm as a method to generate statistical inferencing
procedures, and thus don't assume that the Bayesian prior assumption has to be true. In particular,
we do not even assume that {p(:|6) : 0 € T'}.



unknown) distribution when the number of observations approach infinity.

A more general question is whether the Bayesian posterior distribution will be concen-
trated around the true underlying distribution when the sample size is large. This is often
referred to as the consistency of Bayesian posterior distribution, which is certainly the most
fundamental issue for understanding the behavior of Bayesian methods. This problem has
drawn considerable attention in statistics. The classical results include average consistency
results such as Doob’s consistency theorem and asymptotic convergence results such as the
Bernstein-von Mises theorem for parametric problems. For infinite-dimensional problems,
one has to choose the prior very carefully, or the Bayesian posterior may not concentrate
around the true underlying distribution, which leads to inconsistency [1, 2]. In [1], the
authors also gave conditions that guarantee the consistency of Bayesian posterior distribu-
tions, although convergence rates were not obtained. The convergence rates were studied
in two recent works [3, 8] by using heavy machineries from the empirical process theory.

The purpose of this paper is to develop finite-sample convergence bounds for Bayesian
posterior distributions using a novel approach that not only simplifies the analysis given
in [3, 8], but also leads to tighter bounds. At the heart of our approach are some new
posterior averaging bounds that are related to the PAC Bayes analysis appeared in some
recent machine learning works. These new bounds are of independent interests (though
we cannot fully explore their consequences here) since they can be used to obtain correct
convergence rates for other statistical estimation problems such as least squares regression.
Motivated by our learning bounds, we introduce a generalized family of Bayesian methods,
and show that their convergence behavior relies only on the prior mass in a small neighbor-
hood around the true distribution. This is rather surprising when we consider the example
given in [1], which shows that for the (standard) Bayesian method, even if one puts a posi-
tive prior mass around the true distribution, one may still get an inconsistent posterior when
there exist undesirable prior structures far away from the true distribution.

2 The regularization formulation of Bayesian posterior measure

Assume we observe-samplesX = {X;,..., X,,} € X", independently drawn from the
true underlying distributiol®). We shall call any probability density x (¢) with respect to
= that depends on the observati®@n(and measurable o™ x I") a posterior distribution.
Vo € (0, 1], we define a generalized Bayesian postexfof:| X)) with respect tor as:
[[i=, p*(Xi]0)
70| X) = = . Q)
%) fr [LiZ, p*(X:16)dm(6)

We call 7 the a-Bayesian posterior. The standard Bayesian posterior is denoted as
7(-|X) = 7'(:]X). Given a probability densitys(-) on T" with respect tor, we define
the KL-divergencé L(wdr||dr) as:

KL(wdnr||dr) /F w(0) nw(0)dx(0).

Consider a real-valued functigf{f) onT', we denote byE . f(#) the expectation of (+)
with respect tor. Similarly, consider a real-valued functidiiz) on X, we denote by
E, ¢(x) the expectation of(-) with respect the true underlying distributign\We also use
E x to denote the expectation with respect to the observation

The key starting point of our analysis is the following simple observation that relates the
Bayesian posterior to the solution of an entropy regularized density (with respecess
timation. Under this formulation, techniques for analyzing regularized risk minimization
problems, such as those recently investigated by the author, can be applied to obtain sample



complexity bound for Bayesian posterior distributions. The proof of the following regular-
izationformulation is straight-forward, which we shall skip due to the space limitation.

Proposition 2.1 For any densityw onI" with respect tar, let

n

Ry (w) = ax > Eruw(®)ln p(fgf% + %KL(wdﬂHdw).

ThenRS (7 (1| X)) = inf,, RS (w).

The above Proposition indicates that the generalized Bayesian posterior minimizes the reg-
ularized empirical risld%% (w) among all possible densities with respect to the prior.

We thus only need to study the behavior of this regularized empirical risk minimization
problem. One may define the true risk ©fby replacing the empirical expectatidii

with the expectation with respect to the true underlying distribugion

Ry (w) = aEr w(0)KL(q|[p(-]0)) + %KL(wdﬂHdﬁ), )

whereKL(¢||lp) = E, In ZE;? is the KL-divergence betweepandp, which is always a

non-negative number. This quantity is widely used to measure the closeness of two dis-
tributionsp andq. Clearly the Bayesian posterior is an approximate solution to (2) using
empirical expectation. The first term & (w) measures the average KL-divergencey of
andp under thew-density. Since both the first term and the second term are non-negative,
we know immediately that ifzy (w) = 0, then the distribution is concentrated around

Using empirical process techniques, one would typically expect to bérid) in term

of R% (w). Unfortunately, it does not work in our case siff€& (¢||p) is not well-defined
for all p. This implies that as long as has non-zero concentration around a densitjth
KL(q||lp) = +o0, thenRg (w) = +o0. Therefore we may havB; (7(:|X)) = +oo with
non-zero probability even when the sample size approaches infinity.

A remedy is to consider a distance function that is always well-defined. In statistics, one
often considers the-divergence fop € (0, 1), which is defined as:

e - (55 @

Thisdivergence is always well-defined akdL(q||p) = lim,_.o D,(q||p). In the statistical
literature, the convergence results were often specified under the Hellinger distaace (p
0.5). We would also like to mention that our learning bound derived later will become
trivial whenp — 0. This is consistent with the above discussion sifige(corresponding

to p = 0) may not converge at all. However, under additional assumptions, such as the
boundedness a@f/p, KL(q¢||p) exists and can be bounded using théivergenceD, (q||p).

D,(qllp) =

3 Posterior averaging bounds under entropy regularization

The following inequality follows directly from a well-known convex duality. For example,
see [5, 7] for an explanation.

Proposition 3.1 Assume thaf (9) is a measurable real-valued function ®nandw(6) is
a density with respect te, we have

E.w(0)f(0) < KL(wdn||dr) + InE exp(f(6)).



The main technical result which forms the basis of the paper is given by the following
lemma,where we assume thdty (9) is a posterior (density with respecttahat depends
on X and measurable o™ x I).

Lemma 3.1 Consider any posteriotvx (). The following inequality holds for all mea-
surable real-valued functionsx (6) on X™ x I':

Ex exp {Eﬂbx(&)(Lx(@) I Exelx®) _ KL(wydr||dr)| < 1,
whereE x is the expectation with respect to the observation

Proof. From Proposition 3.1, we obtain
L(X) =E ix(0)(Lx(0) — InExe"*®) — KL(wxdr]||dr)
<InE, exp(Lx(0) — In Exelx(?),
Now applying the Fubini’s theorem to interchange the order of integration, we have:
EXeL(X) < EXETreLX(F))—lnEX exp(Lx (0)) _ ETFEXeLX(G)—lnEX exp(Lx(0)) — 1.
O

The following corollary is a straight-forward consequence of Lemma 3.1. Note that for the
Bayesian method, the logg(x) has a form o¥(p(x|0)).

Theorem 3.1 (Posterior Averaging Bounds)Under the notation of Lemma 3.1. L&t =
{X4,...,X,} ben-samples that are independently drawn frpmConsider a measurable
functionfy(x) : I' x X — R. ThenVvt > 0 and real numbep, the following event holds
with probability at leastl — exp(—t):

< pZ?zl Eﬂ- wx(@)gg(Xl) + KL(UA)Xci’lTHd’lT) + t.

- n

— E x(0) InE, exp(—plo(z)))

Moreover, we have the following expected risk bound:

L Erwx (0)(X;) + KL(wxdr||d

Proof Sketch. The first bound is a direct consequence of Markov inequality. The second
bound can be obtained by using the f&¢t exp(Ax) > exp(ExAx), which follows
from the Jensen’s inequality

The above bounds are immediately applicable to Bayesian posterior distribution. The first
leads to an exponential tail inequality, and the second leads to an expected risk bound.

Before analyzing Bayesian methods in detail in the next section, we shall briefly compare
the above results to the so-called PAC-Bayes bounds, which can be obtained by estimating
the left-hand side using the Hoeffding’s inequality with an appropriately chpsétow-

ever, in the following, we shall estimate the left-hand side using a Bernstein style bound,
which is much more useful for general statistical estimation problems:

Corollary 3.1 Under the notation of Theorem 3.1, and assume ghaj ., ., [fo(z1) —
lo(z2)| < 1. ThenVt, p > 0, with probability of at least — exp(—t):
A ) l~g -
Exx (0)Eqlo() — pd(p)Erox () Varls(z) < > Erix (0)0o(X)
=1

n KL(wxdr||dr) +t
on
whee ¢(z) = (exp(z) — z — 1)/2? and Var, ly(z) = E,(¢g(z) — E ly(z))>.

)



Proof Sketch.We follow one of the standard derivations of Bernstein inequality outlined
below: it is well known that)(z) is non-decreasing im, which in turn implies that

InE, exp(—ply(z))) < —pEqlo(x) + p*¢(p)Eq(bo(z) — Eqly())*.
Now applying this bound to the left hand side of Theorem 3.1, we finish the proof.
One may use the simple bouMr, £»(x) < 1/4 and obtaif.

This inequality holds for any data-independent choic@.oHowever, one may easily turn
it into a bound which allowg to depend on the data using well-known techniques (see [5],
for example). After we optimize, the resulting bound becomes similar to the PAC-Bayes
bound [4]. Typically the optimap is in the order of,/KL(w@xdr||dr)/n, and hence the

rate of convergence given on the right-hand side is no better®ignl /n). However, the
more interesting case is when there exists a constand such that

E,(lg(z) — Eyly(x))* < bE Lg(z). (5)

This condition appears in the theoretical analysis of many statistical estimation problems,
such as least squares regression, and when the loss function is non-negative (such as clas-
sification). It also appears in some analysis of maximum-likelihood estimation (log-loss),
though as we shall see, log-loss can be much more directly handled in our framework using
Theorem 3.1. A modified version of this condition also occurs in some recent analysis of
classification problems even when the problem is not separable. We shall now assume that
(5) holds. It follows from Corollary 3.1 thatp > 0 such thap(p) < 1/b, we have
< pEwwx(e) Z?:l gg(Xz) +KL(1bxd7T||d7T) +1t (6)
B p(L = bpd(p))n

Again the above inequality holds for any data-indepengehtit we can easily turn it into

a bound that allowg to depend onX using standard techniques. However we shall not
list the final result here since this is not the purpose of the paper. The parantetetbe
optimized, and it is not hard to check that the resulting bound is significantly better than (4)
whenE wx(0) >, Lf) =~ 0. The “self-bounding” condition (5) holds in the theo-
retical analysis of many statistical estimation problems. To obtain the correct convergence
behavior in such cases (including the Bayesian method which we are interested in here),
inequality (4) is inadequate, and it is essential to use a Bernstein-type bound such as (6). It
is also useful to point out that to analyze such problems, one actually only needs (6) with
an appropriately chosen data-indepengenthich will lead to the correct (minimax) rate

of convergence. Note that if we choogéo be a constant, then it is possible to achieve a
bound that converges as fast@él/n). We shall point out that in [7], a KL-divergence
version of the PAC-Bayes bound was developed for the 0-1 loss using related techniques,
which can lead to a rate as fast@¢lnn/n) if we make near zero errors. However, the
Bernstein style bound given here is more generally applicable and is necessary for more
complicated statistical estimation problems such as least squares regression.

E x(0)Elo(x)

4 Convergence bounds for Bayesian posterior distributions

We shall now analyze the finite sample convergence behavior of Bayesian posterior distri-
butions using Theorem 3.1. Although the exponential tail inequality provides more detailed
information, our discussion will be based on the expected risk bound for simplicity.

2In this case, slightly tighter results can be obtained by applying the Hoeffding’s exponential
inequality directly to the left-hand side of Theorem 3.1, instead of the method used in Corollary 3.1.



To analyze the Bayesian method, wedgtz) = In(q(x)/p(z|0)) in Theorem 3.1. Con-
siderp € (0,1). We also letwx (6) be the Bayesian posteria®(6|X) with parameter
a € [p, 1] defined in (1). Consider an arbitrary data-independent dengity with respect
to 7, using (3), we can obtain from Theorem 3.1 the following chain of equations:

1
1= p(1 = p)D,(allp(-16))
=—ExE m%(0|X)InE,exp (—pln a(x) )

ExE,7m*(0|X)In

p(z[0)
"1 KL(WO‘(9|X)d7r||d7r)
<E E X) —
SEx | pEr 7 (0] ;n X|6‘ n
1 & q(X;)  KL(wdn]||dr) a—p "L p(X4]0)
< — 1 1
<Ex aEww(O)ni:Z1 np(Xi\Q) + - + - EXs%pZ n (X

=R (w) + ?EX SuleIl p(Xil0)
0 =

where g (w) is defined in (2). Note that the first inequality follows from Theorem 3.1,
and the second inequality follows from Proposition 2.1. The empirical process bound in
the second term can be improved using a more precise bounding method, but we shall
skip it here due to the lack of space. It is not difficult to see (also see Proposition 2.1 and
Proposition 3.1) that (we skip the derivation due to the space limitation):

. e 1
151}f Ry (w) = - InE; exp(—anKL(qg||p(-[0))).

Using the fact- In(1 — =) > « to simplify the left-hand side, we thus obtain:
ExE.7*(01X)D,(qllp(-|0))
—InEpe@KL@PCI0) 4 (o — p)Ex sup, S0, In 2

(X))
< .
- p(1—p)n

)

In the following, we shall compare our analysis with previous results. To be consistent with
the concept used in these previous studies, we shall consider the following quantity:

mp? (X, €) = Exn® (0| X)1(D,(qlp(-10)) = €),

wherel is the set indicator function. Intuitivelyn:* (X €) is the probability mass of the
a-Bayesian posterior®(-| X) in the region ofp(-|0) that is at least-distance away from

in D,-divergence. Using Markov inequality, we immediately obtain from (7) the following
bound form:*(X):

—InEre KL 4 (o — p)Ex supy Y7 In 251D
p(1— p)ne '

EXmﬁ’p(X, 6) <

8)

Next we would like to estimate the right-hand side of (8). Due to the limitation of space, we
shall only consider a simple truncation estimation, which leads to the correct convergence
rate for non-parametric problems but yields an unneces$saryactor for parametric prob-

lems (which can be correctly handled with a more precise estimation). We introduce the
following notation, which is essentially the prior measure otaadiusKL-ball aroundy:

M (e) = n(KL(q[[p(-19)) < €) = ExL(KL(q||p(-|6)) < ¢).



Using this definition, we havE, e~ KLdllP(19) > KL (e)e—ene |n addition, we shall
define thec-upper bracketing df (introduced in [1]), denoted by (T, €), as the minimum
number of non-negative functiog; } on X’ with respect to\ such thate, (f;/q) = 1 +e¢,
andv@ € T, 3i such thap(z|0) < f;(z) a.e.[\]. We have

N(T,e)
X 9 1 fJ(Xi)
fEXSupZI | <— E In Z e
N(T, s) v oW LD In N(T
ln Z ExeXi=1 " X)) :M—l—ln(l—ﬁ—e).

n

Therefore we obtain from (8) thats > 0:
1 In NI
o1~ )sExm?(X, 56) < 0~ MEV() 4 (o p) A ERE
€ €
Theabove bound immediately implies the following consistency and convergence rate the-
orem for Bayesian posterior distribution:

Theorem 4.1 Consider a sequence of Bayesian prior distributionson a parameter
spacd’,,, which may be different for different sample sizes. Consider a sequence of positive
numbers{e, } such that

—1
sup —— In MKL (en) < 00, 9)

thenVs,, > 0 sud thats,, — oo, andva € (0,1), my*(X, s,€,) — 0 in probability.

Moreover, if

In NIy, €,)
sup T < 0

thenVs,, > 0 sud thats,, — oo, andVp € (0, 1), m2*(X, spe,) — 0 in probability.

; (10)

The first claim implies that for allv < 1, the a-Bayesian posterior® is concentrated in
ane, ball aroundg in D, divergence, and the rate of convergenc®jge,,). Note that
€y is determined only by the local property of, around the true distribution. It also

immediately implies that as long ddX%(¢) > 0 for all ¢ > 0, the a-Bayesian method
with o < 1 is consistent.

The second claim applies to the standard Bayesian method. Its consistency requires an
additional assumption (10), which depends on global properties of therpyiorhis may

seem somewhat surprising at first, but the condition is necessary. In fact, the counter-
example given in [1] shows that the standard Bayesian method can be inconsistent even
under the condition /<" (¢) > 0 for all ¢ > 0. Therefore a standard Bayesian procedure
can be ill-behaved even if we put a sufficient amount of prior around the true distribution.

The consistency theorem given in [1] also relies on the upper entropy nuWfere).
However, no convergence rates were established. Here we obtained a rate of convergence
result for the standard Bayesian method using their covering definitions. Other definitions
of covering (e.g. Hellinger covering) were used in more recent works to obtain rate of
convergence for non-parametric Bayesian methods [3, 8]. Although it is possible to de-
rive bounds using those different covering definitions in our analysis, we shall not work
out the details here. However, we shall point out that these works made assumptions not
completely necessary. For example, in [3], the deflnltlorM;ﬂ(L ) requires additional
assumptions thd, In(q/p(:|0))* < €. This stronger condition is not needed in our anal-
ysis. Finally we shaII mention that the bound of the form in Theorem 4.1 is known to
produce optimal convergence rates for non-parametric problems (see [3, 8] for examples).



5 Conclusion

In this paper, we formulated an extended family of Bayesian algorithms as empirical log-
risk minimization under entropy regularization. We then derived general posterior averag-
ing bounds under entropy regularization that are suitable for analyzing Bayesian methods.
These new bounds are of independent interests since they lead to Bernstein style exponen-
tial inequalities, which are crucial for obtaining the correct convergence behavior for many
statistical estimation problems such as least squares regression.

Using the posterior averaging bounds, we obtain new convergence results for a generalized
family of Bayesian posterior distributions. Our results imply thatdhBayesian method

with o < 1 is more robust than the standard Bayesian method since its convergence be-
havior is completely determined by the local prior density around the true distribution. Al-
though the standard Bayesian method is “optimal” in a certain averaging sense, its behavior
is heavily dependent on the regularity of the prior distribution globally. What happens is
that the standard Bayesian method can put too much emphasis on the difficult part of the
prior distribution, which degrades the estimation quality in the easier parts where we are
actually more interested in. Therefore even if one is able to guess the true distribution
by putting a large prior mass around its neighborhood, the Bayesian method can still ill-
behave if one accidentally makes bad choices elsewhere. It is thus difficult to design good
Bayesian priors. The new theoretical insights obtained here imply that unless one com-
pletely understands the impact of the prior, it is much safer to ugeBayesian method.
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