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Abstract

Recent multi-agent extensions of Q-Learning require knowledge of other
agents’ payoffs and Q-functions, and assume game-theoretic play at
all times by all other agents. This paper proposes a fundamentally
different approach, dubbed “Hyper-Q” Learning, in which values of
mixed strategies rather than base actions are learned, and in which other
agents’ strategies are estimated from observed actions via Bayesian in-
ference. Hyper-Q may be effective against many different types of adap-
tive agents, even if they are persistently dynamic. Against certain broad
categories of adaptation, it is argued that Hyper-Q may converge to ex-
act optimal time-varying policies. In tests using Rock-Paper-Scissors,
Hyper-Q learns to significantly exploit an Infinitesimal Gradient Ascent
(IGA) player, as well as a Policy Hill Climber (PHC) player. Preliminary
analysis of Hyper-Q against itself is also presented.

1 Introduction

The question of how agents may adapt their strategic behavior while interacting with other
arbitrarily adapting agents is a major challenge in both machine learning and multi-agent
systems research. While game theory provides a pricipled calculation of Nash equilibrium
strategies, it is limited in practical use due to hidden or imperfect state information, and
computational intractability. Trial-and-error learning could develop good strategies by try-
ing many actions in a number of environmental states, and observing which actions, in
combination with actions of other agents, lead to high cumulative reward. This is highly
effective for a single learner in a stationary environment, where algorithms such as Q-
Learning [13] are able to learn optimal policies on-line without a model of the environment.
Straight off-the-shelf use of RL algorithms such as Q-learning is problematic, however, be-
cause: (a) they learn deterministic policies, whereas mixed strategies are generally needed;
(b) the environment is generally non-stationary due to adaptation of other agents.

Several multi-agent extensions of Q-Learning have recently been published. Littman [7]
developed a convergent algorithm for two-player zero-sum games. Hu and Wellman [5]
present an algorithm for two-player general-sum games, the convergence of which was
clarified by Bowling [1]. Littman [8] also developed a convergent many-agent “friend-or-
foe” Q-learning algorithm combining cooperative learning with adversarial learning. These
all extend the normal Q-function of state-action pairs Q(s, a) to a function of states and
joint actions of all agents, Q(s,�a). These algorithms make a number of strong assumptions



which facilitate convergence proofs, but which may not be realistic in practice. These
include: (1) other agents’ payoffs are fully observable; (2) all agents use the same learning
algorithm; (3) during learning, other agents’ strategies are derivable via game-theoretic
analysis of the current Q-functions. In particular, if the other agents employ non-game-
theoretic or nonstationary strategies, the learned Q-functions will not accurately represent
the expected payoffs obtained by playing against such agents, and the associated greedy
policies will not correspond to best-reponse play against the other agents.

The aim of this paper is to develop more general and practical extensions of Q-learning
avoiding the above assumptions. The multi-agent environment is modeled as a repeated
stochastic game in which other agents’ actions are observable, but not their payoffs. Other
agents are assumed to learn, but the forms of their learning algorithms are unknown, and
their strategies may be asymptotically non-stationary. During learning, it is proposed to es-
timate other agents’ current strategies from observation instead of game-theoretic analysis.

The above considerations lead to a new algorithm, presented in Section 2 of the paper,
called “Hyper-Q Learning.” Its key idea is to learn the value of joint mixed strategies, rather
than joint base actions. Section 3 discusses the effects of function approximation, explo-
ration, and other agents’ strategy dynamics on Hyper-Q’s convergence. Section 4 presents
a Bayesian inference method for estimating other agents’ strategies, by applying a recency-
weighted version of Bayes’ rule to the observed action sequence. Section 5 discusses im-
plementation details of Hyper-Q in a simple Rock-Paper-Scissors test domain. Test results
are presented against two recent algorithms for learning mixed strategies: Infinitesimal
Gradient Ascent (IGA) [10], and Policy Hill Climbing (PHC) [2]. Preliminary results of
Hyper-Q vs. itself are also discussed. Concluding remarks are given in section 6.

2 General Hyper-Q formulation

An agent using normal Q-learning in a finite MDP repeatedly observes a state s, chooses
a legal action a, and then observes an immediate reward r and a transition to a new state
s′. The Q-learning equation is given by: ∆Q(s, a) = α(t)[r + γ maxb Q(s′, b)−Q(s, a)],
where γ is a discount parameter, and α(t) is an appropriate learning rate schedule. Given a
suitable method of exploring state-action pairs, Q-learning is guaranteed to converge to the
optimal value function Q∗, and its associated greedy policy is thus an optimal policy π∗.

The multi-agent generalization of an MDP is called a stochastic game, in which each agent i
chooses an action ai in state s. Payoffs ri to agent i and state transitions are now functions
of joint actions of all agents. An important special class of stochastic games are matrix
games, in which |S| = 1 and payoffs are functions only of joint actions. Rather than
choosing the best action in a given state, an agent’s task in a stochastic game is to choose the
best mixed strategy �xi = �xi(s) given the expected mixed strategy �x−i(s) of all other agents.
Here �xi denotes a set a probabilities summing to 1 for selecting each of the Ni = Ni(s)
legal actions in state s. The space of possible mixed strategies is a continuous (Ni − 1)
dimensional unit simplex, and choosing the best mixed strategy is clearly more complex
than choosing the best base action.

We now consider extensions of Q-learning to stochastic games. Given that the agent needs
to learn a mixed strategy, which may depend on the mixed strategies of other agents, an
obvious idea is to have the Q-function evaluate entire mixed strategies, rather than base
actions, and to include in the “state” description an observation or estimate of the other
agents’ current mixed strategy. This forms the basis of the proposed Hyper-Q learning
algorithm, which is formulated as follows. For notational simplicity, let x denote the Hyper-
Q learner’s current mixed strategy, and let y denote an estimated joint mixed strategy of all
other agents (hereafter referred to as “opponents”). At time t, the agent generates a base
action according to x, and then observes a payoff r, a new state s′, and a new estimated
opponent strategy y′. The Hyper-Q function Q(s, y, x) is then adjusted according to:



∆Q(s, y, x) = α(t)[r + γ max
x′

Q(s′, y′, x′) − Q(s, y, x)] (1)

The greedy policy x̂ associated with any Hyper-Q function is then defined by:

x̂(s, y) = arg max
x

Q(s, y, x) (2)

3 Convergence of Hyper-Q Learning
3.1 Function approximation

Since Hyper-Q is a function of continuous mixed strategies, one would expect it to require
some sort of function approximation scheme. Establishing convergence of Q-learning with
function approximation is substantially more difficult than for a normal Q-table for a finite
MDP, and there are a number of well-known counterexamples. In particular, finite dis-
cretization may cause a loss of an MDP’s Markov property [9].

Several recent function approximation schemes [11, 12] enable Q-learning to work well in
continuous spaces. There is a least one discretization scheme, Finite Difference Reinforce-
ment Learning [9], that provably converges to the optimal value function of the underlying
continuous MDP. This paper employs a simple uniform grid discretization of the mixed
strategies of the Hyper-Q agent and its opponents. No attempt will be made to prove con-
vergence under this scheme. However, for certain types of opponent dynamics described
below, a plausible conjecture is that a Finite-Difference-RL implementation of Hyper-Q
will be provably convergent.

3.2 Exploration

Convergence of normal Q-learning requires visiting every state-action pair infinitely often.
The clearest way to achieve this in simulation is via exploring starts, in which training con-
sists of many episodes, each starting from a randomly selected state-action pair. For real
environments where this may not be feasible, one may utilize off-policy randomized explo-
ration, e.g., ε-greedy policies. This will ensure that, for all visited states, every action will
be tried infinitely often, but does not guarantee that all states will be visited infinitely often
(unless the MDP has an ergodicity property). As a result one would not expect the trained
Q function to exactly match the ideal optimal Q∗ for the MDP, although the difference in
expected payoffs of the respective policies should be vanishingly small.

The above considerations should apply equally to Hyper-Q learning. The use of explor-
ing starts for states, agent and opponent mixed strategies should guarantee sufficient ex-
ploration of the state-action space. Without exploring starts, the agent can use ε-greedy
exploration to at least obtain sufficient exploration of its own mixed strategy space. If
the opponents also do similar exploration, the situation should be equivalent to normal Q-
learning, where some stochastic game states might not be visited infinitely often, but the
cost in expected payoff should be vanishingly small. If the opponents do not explore, the
effect could be a further reduction in effective state space explored by the Hyper-Q agent
(where “effective state” = stochastic game state plus opponent strategy state). Again this
should have a negligible effect on the agent’s long-run expected payoff relative to the policy
that would have been learned with opponent exploration.

3.3 Opponent strategy dynamics

Since opponent strategies can be governed by arbitrarily complicated dynamical rules, it
seems unlikely that Hyper-Q learning will converge for arbitrary opponents. Nevertheless,
some broad categories can be identified under which convergence should be achievable.
One simple example is that of a stationary opponent strategy, i.e., y(s) is a constant. In this



case, the stochastic game obviously reduces to an equivalent MDP with stationary state
transitions and stationary payoffs, and with the appropriate conditions on exploration and
learning rates, Hyper-Q will clearly converge to the optimal value function.

Another important broad class of dynamics consists of opponent strategies that evolve ac-
cording to a fixed, history-independent rule depending only on themselves and not on ac-
tions of the Hyper-Q player, i.e., yt+1 = f(s, yt). This is a reasonable approximation for
many-player games in which any individual has negligible “market impact,” or in which a
player’s influence on another player occurs only through a global summarization function
[6]. In such cases the relevant population strategy representation need only express global
summarizations of actitivy (e.g. averages), not details of which player does what. An ex-
ample is the “Replicator Dynamics” model from evolutionary game theory [14], in which
a strategy grows or decays in a population according to its fitness relative to the popula-
tion average fitness. This leads to a history independent first order differential equation
ẏ = f(y) for the population average strategy. In such models, the Hyper-Q learner again
faces an effective MDP in which the effective state (s, y) undergoes stationary history-
independent transitions, so that Hyper-Q should be able to converge.

A final interesting class of dynamics occurs when the opponent can accurately estimate
the Hyper-Q strategy x, and then adapts its strategy using a fixed history-independent
rule: yt+1 = f(s, yt, xt). This can occur if players are required to announce their mixed
strategies, or if the Hyper-Q player voluntarily announces its strategy. An example is the
Infinitesimal Gradient Ascent (IGA) model [10], in which the agent uses knowledge of the
current strategy pair (x, y) to make a small change in its strategy in the direction of the gra-
dient of immediate payoff P (x, y). Once again, this type of model reduces to an MDP with
stationary history-independent transitions of effective state depending only on (s, y, x).

Note that the above claims of reduction to an MDP depend on the Hyper-Q learner being
able to accurately estimate the opponent mixed strategy y. Otherwise, the Hyper-Q learner
would face a POMDP situation, and standard convergence proofs would not apply.

4 Opponent strategy estimation

We now consider estimation of opponent strategies from the history of base actions. One
approach to this is model-based, i.e., to consider a class of explicit dynamical models of
opponent strategy, and choose the model that best fits the observed data. There are two
difficult aspects to this approach: (1) the class of possible dynamical models may need to
be extraordinarily large; (2) there is a well-known danger of “infinite regress” of opponent
models if A’s model of B attempts to take into account B’s model of A.

An alternative approach studied here is model-free strategy estimation. This is in keeping
with the spirit of Q-learning, which learns state valuations without explicitly modeling the
dynamics of the underlying state transitions. One simple method used in the following
section is the well-known Exponential Moving Average (EMA) technique. This maintains
a moving average ȳ of opponent strategy by updating after each observed action using:

ȳ(t + 1) = (1 − µ)ȳ(t) + µ�ua(t) (3)

where �ua(t) is a unit vector representation of the base action a. EMA assumes only that
recent observations are more informative than older observations, and should give accurate
estimates when significant strategy changes take place on time scales > O(1/µ).

4.1 Bayesian strategy estimation

A more principled model-free alternative to EMA is now presented. We assume a discrete
set of possible values of y (e.g. a uniform grid). A probability for each y given the history
of observed actions H , P (y|H), can then be computed using Bayes’ rule as follows:



P (y|H) =
P (H|y)P (y)∑
y′ P (H|y′)P (y′)

(4)

where P (y) is the prior probability of state y, and the sum over y′ extends over all strategy
grid points. The conditional probability of the history given the strategy, P (H|y), can
now be decomposed into a product of individual action probabilities

∏t
k=0 P (a(k)|y(t))

assuming conditional independence of the individual actions. If all actions in the history
are equally informative regardless of age, we may write P (a(k)|y(t)) = ya(k)(t) for all
k. This corresponds to a Naive-Bayes equal weighting of all observed actions. However, it
is again reasonable to assume that more recent actions are more informative. The way to
implement this in a Bayesian context is with exponent weights wk that increase with k [4].
Within a normalization factor, we then write:

P (H|y) =
t∏

k=0

ywk

a(k) (5)

A linear schedule wk = 1 − µ(t − k) for the weights is intuitively obvious; truncation of
the history at the most recent 1/µ observations ensures that all weights are positive.

5 Implementation and Results

We now examine the performance of Hyper-Q learning in a simple two-player matrix game,
Rock-Paper-Scissors. A uniform grid discretization of size N = 25 is used to represent
mixed-strategy component probabilities, giving a simplex grid of size N(N + 1)/2 = 325
for either player’s mixed strategy, and thus the entire Hyper-Q table is of size (325)2 =
105625. All simulations use γ = 0.9, and for simplicity, a constant learning rate α = 0.01.

5.1 Hyper-Q/Bayes formulation

Three different opponent estimation schemes were used with Hyper-Q learning: (1) “Om-
niscient,” i.e. perfect knowledge of the opponent’s strategy; (2) EMA, using equation 3
with µ = 0.005; (3) Bayesian, using equations 4 and 5 with µ = 0.005 and a uniform
prior. Equations 1 and 2 were modified in the Bayesian case to allow for a distribution of
opponent states y, with probabilities P (y|H). The corresponding equations are:

∆Q(y, x) = α(t)P (y|H)[r + γ max
x′

Q(y′, x′) − Q(y, x)] (6)

x̂ = arg max
x

∑

y

P (y|H)Q(y, x) (7)

A technical note regarding equation 6 is that, to improve tractability of the algorithm, an ap-
proximation P (y|H) ≈ P (y′|H ′) is used, so that the Hyper-Q table updates are performed
using the updated distribution P (y′|H ′).

5.2 Rock-Paper-Scissors results
We first examine Hyper-Q training online against an IGA player. Apart from possible state
observability and discretization issues, Hyper-Q should in principle be able to converge
against this type of opponent. In order to conform to the original implicit assumptions
underlying IGA, the IGA player is allowed to have omniscient knowledge of the Hyper-Q
player’s mixed strategy at each time step. Policies used by both players are always greedy,
apart from resets to uniform random values every 1000 time steps.

Figure 1 shows a smoothed plot of the online Bellman error, and the Hyper-Q player’s
average reward per time step, as a function of training time. The figure exhibits good
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Figure 1: Results of Hyper-Q learning vs. an IGA player in Rock-Paper-Scissors, using
three different opponent state estimation methods: “Omniscient,” “EMA” and “Bayes” as
indicated. Random strategy restarts occur every 1000 time steps. Left plot shows smoothed
online Bellman error. Right plot shows average Hyper-Q reward per time step.
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Figure 2: Trajectory of the IGA mixed strategy against the Hyper-Q strategy starting from
a single exploring start. Dots show Hyper-Q player’s cumulative (rescaled) reward.

progress toward convergence, as suggested by substantially reduced Bellman error and
substantial positive average reward per time step. Among the three estimation methods
used, Bayes reached the lowest Bellman error at long time scales. This is probably because
it updates many elements in the Hyper-Q table per time step, whereas the other techniques
only update a single element. Bayes also has by far the worst average reward at the start of
learning, but asymptotically it clearly outperforms EMA, and comes close to matching the
performance obtained with omniscient knowledge of opponent state.

Part of Hyper-Q’s advantage comes from exploiting transient behavior starting from a ran-
dom initial condition. In addition, Hyper-Q also exploits the asymptotic behavior of IGA,
as shown in figure 2. This plot shows that the initial transient lasts at most a few thousand
time steps. Afterwards, the Hyper-Q policy causes IGA to cycle erraticly between two dif-
ferent probabilites for Rock and two different probabilities for Paper, thus preventing IGA
from reaching the Nash mixed strategy. The overall profit to Hyper-Q during this cycling
is positive on average, as shown by rising cumulative Hyper-Q reward. The observed cy-
cling with positive profitability is reminiscent of an algorithm called PHC-Exploiter [3] in
play against a PHC player. An interesting difference is that PHC-Exploiter uses an explicit
model of its opponent’s behavior, whereas no such model is needed by a Hyper-Q learner.
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Figure 3: Results of Hyper-Q vs. PHC in Rock-Paper-Scissors. Left plot shows smoothed
online Bellman error. Right plot shows average Hyper-Q reward per time step.

We now exmamine Hyper-Q vs. a PHC player. PHC is a simple adaptive strategy based
only on its own actions and rewards. It maintains a Q-table of values for each of its base
actions, and at every time step, it adjusts its mixed strategy by a small step towards the
greedy policy of its current Q-function. The PHC strategy is history-dependent, so that
reduction to an MDP is not possible for the Hyper-Q learner. Nevertheless Hyper-Q does
exhibit substantial reduction in Bellman error, and also significantly exploits PHC in terms
of average reward, as shown in figure 3. Given that PHC ignores opponent state, it should
be a weak competitive player, and in fact it does much worse in average reward than IGA.
It is also interesting to note that Bayesian estimation once again clearly outperforms EMA
estimation, and surprisingly, it also outperforms omniscient state knowledge. This is not
yet understood and is a focus of ongoing research.
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Figure 4: Smoothed online Bellman error for Hyper-Q vs. itself. Left plot uses Omniscient
state estimation; right plot uses Bayesian estimation.

Finally, we examine preliminary data for Hyper-Q vs. itself. The average reward plots
are uninteresting: as one would expect, each player’s average reward is close to zero. The
online Bellman error, shown in figure 4, is more interesting. Surprisingly, the plots are less
noisy and achieve asymptotic errors as low or lower than against either IGA or PHC. Since
Hyper-Q’s play is history-dependent, one can’t argue for MDP equivalence. However, it is
possible that the players’ greedy policies x̂(y) and ŷ(x) simultaneously become stationary,
thereby enabling them to optimize against each other. In examining the actual play, it
does not converge to the Nash point (1

3 , 1
3 , 1

3 ), but it does appear to cycle amongst a small
number of grid points with roughly zero average reward over the cycle for both players.
Conceivably, Hyper-Q could have converged to a cyclic Nash equilibrium of the repeated
game, which would certainly be a nice outcome of self-play learning in a repeated game.



6 Conclusion

Hyper-Q Learning appears to be more versatile and general-purpose than any published
multi-agent extension of Q-Learning to date. With grid discretization it scales badly but
with other function approximators it may become practical. Some tantalizing early results
were found in Rock-Paper-Scissors tests against some recently published adaptive oppo-
nents, and also against itself. Research on this topic is very much a work in progress. Vastly
more research is needed, to develop a satisfactory theoretical analysis of the approach, an
understanding of what kinds of realistic environments it can be expcted to do well in, and
versions of the algorithm that can be successfully deployed in those environments.

Significant improvements in opponent state estimation should be easy to obtain. More
principled methods for setting recency weights should be achievable; for example, [4] pro-
poses a method for training optimal weight values based on observed data. The use of
time-series prediction and data mining methods might also result in substantially better
estimators. Model-based estimators are also likely to be advantageous where one has a
reasonable basis for modeling the opponents’ dynamical behavior.
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