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Abstract

When we model a higher order functions, such as learning and memory,
we face a difficulty of comparing neural activities with hidden variables
that depend on the history of sensory and motor signals and the dynam-
ics of the network. Here, we propose novel method for estimating hidden
variables of a learning agent, such as connection weights from sequences
of observable variables. Bayesian estimation is a method to estimate the
posterior probability of hidden variables from observable data sequence
using a dynamic model of hidden and observable variables. In this pa-
per, we apply particle filter for estimating internal parameters and meta-
parameters of a reinforcement learning model. We verified the effective-
ness of the method using both artificial data and real animal behavioral
data.

1 Introduction

In neurophysiology, the traditional approach to discover unknown information processing
mechanisms is to compare neuronal activities with external variables, such as sensory stim-
uli or motor output. Recent advances in computational neuroscience allow us to make pre-
dictions on neural mechanisms based on computational models. However, when we model
higher order functions, such as attention, memory and learning, the model must inevitably
include hidden variables which are difficult to infer directly from externally observable
variables.

Although the assessment of the plausibility of such models depends on the right estimate of
the hidden variables, tracking their values in an experimental setting is a difficult problem.
For example, in learning agents, hidden variables such as connection weights change in
time. In addition, the course of learning is modulated by hidden meta-parameters such as



the learning rate.

The goal of this study is two-fold: First to establish a method to estimate hidden vari-
ables, including meta-parameters from observable experimental data. Second to provide a
method for objectively selecting the most plausible computational model out of multiple
candidates. We introduce a numerical Bayesian estimation method, known as particle fil-
tering, to estimate hidden variables. We validate this method with a reinforcement learning
task.

2 Reinforcement learning model asan animal and a human decision
processes

Reinforcement learning can be a model of animal or human behaviors based on reward
delivery. Notably, the response of monkey midbrain dopamine neurons are successfully
explained by the temporal differnce (TD) error of reinforcement learning models [2]. The
goal of reinforcement learning is to improve the policy so that the agent maximizes rewards
in the long run. The basic strategy of reinforcement learning is to estimate cumulative
future reward under the current policy as the value function and then to improve the policy
based on the value function. A standard algorithm of reinforcement learning is to learn the
action-value function,
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which estimates the cumulative future reward when action « is taken at a state . The dis-
count factor 0 < v < 1 is a meta-parameter that controls the time scale of prediction. The
policy of the learner is then given by comparing action-values, e.g. according to Boltzman

distribution
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where the inverse temperature 5 > 0 is another meta-parameter that controls randomness

of action selection. From an experience of state s;, action a;, reward r,, and next state
s¢+1, the action-value function is updated by Q-learning algorithm [1] as
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where o > 0 is the meta-parameter that controls learning rate. Thus this simple reinforce-
ment learning modol has three meta-paramters, «, and ~ Such a reinforcement learning
model does not only predict subject’s actions, but also predicts internal process of the brain,
which may be recorded as neural firing or brain imaging data. However, a big problem is
that the predictions are depended on the setting of meta-parameters, such as learning rate
«, action randomness 3 and discount factor ~.

3 Bayesian estimation of hidden variables of reinforcement learning
agent

Let us consider a problem of estimating the time course of action-values {Q:(s,a);s €
S,s € A,0 <t < T} and meta-parameters «, 3, and ~ of reinforcement learner by
only observing the sequence of states s;, actions a; and rewards r;. We use a Bayesian
method of estimating a dynamic hidden variable {x;;t € N} from sequence of observ-
able variable {y;;¢ € N}. We assume that the hidden variable follows a Markov process
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Figure 1. A Bayesian network representation of a Q-learning agent: dynamics of observ-
able and unobservable variable is depended on decision, reward probability, state transition,
and update rule for value function. Circles: hidden variable. Double box: observable vari-
able. Arrow: probabilistic dependency

of initial distribution p(xo) and the transition probability p(x;4+1|x:). The observations
{y:;t € N} are assumed to be conditionally independent given the process {x:;t € N}
and has the marginal distribution p(y|x:). The problem is to estimate recursively in time
the posterior distribution of hidden variable p(xg.t|y1.t), where xo.; = {xo,...,x:} and
vit = {y1,...,y:}. The marginal distribution is given by recursive procedure of the
following prediction and updating,

Predicdion P(Xe|y1:—1) = /p(Xt|Xt71)p(Xt71‘y1:t71)dxt717

; . _ p(Yt\Xt)p(Xt|Y1:t—1)
Updating : p(Xe|y1:e) = fp(}’t|Xt)p(Xt|yu_1)dXt'

We use a numerical method called particle filter [3] to approximate this process. In the
particle filter, the distributions of sequence of hidden variables p(xo.:|y1.:) are represented
by a set of random samples, called “particles”. Figure 1 is the dynamical Bayesian network
representation of a Q-learning agent. The hidden variable x, consists of the action-values
Q(s,a) for each state-action pair, learning rate «, inverse temperature 3, and discount
factor v. The observable variable y, consists of the state s;, action a;, and reward r,.

The marginal distribution p(y|x;) of observation process is given by the softmax action
selection probability (2) combined with the state transition rule and the reward condition
p(re41]8¢, az) given by the environment. The transition probability p(s:41|s¢, a:) of the
hidden variable is given by the Q-learning rule (3) and an assumption about the meta-
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Figure 2: Simplified Bayesian network for the two-armed bandit problem.

parameter dynamics. Here we assume that meta-parameters are constant with small drifts.
Because «, 8 and ~ should all be positive, we assume random-walk dynamics in logarith-
mic space

log(z41) = log(xt) + &5, €2~ N(0,04) (4)

where o, is a meta-meta-parameter that defines variability of the meta-parameter x €

{a, 8,7}

4 Simulations

4.1 Two armed bandit problem with block wise reward change

In order to test the validity of the proposed method, we use a simple Q-leaning agent that
learns a two armed bandit problem [1]. The task has only one state, two actions, and
stochastic binary reward. The reward probability for each action is fixed in a block of
100 trials. The reward probabilities P, for action ¢ = 1 and P, for action a = 2 are
selected randomly from three settings; {P,1, P2} = {0.1,0.9}, {0.50.5},{0.9,0.1} at the
beginning of each block.

The Q-learning agent tries to learn reward expectation of each action and maximize reward
acquired in each block. Because the task has only one state, the agent does not need to
take into account next state’s value, and thus, we set the discount factor as v = 0. The
Bayesian network for this example is simplified as Figure 2. Simulated actions are selected
according to Boltzman distribution (2) using action-values Q(a = 1) and Q(a = 2), and
the inverse temperature 3. The action values are updated by equation (3) with the action
ay, reward r, and learning rate a.



4.2 Result

We used 1000 particles for approximating the distribution of hidden variable x = (Q(a =
1),Q(a = 2),log(a),log(B)). We set the initial distribution of particles as Gaussian dis-
tribution with the mean {0,0,0,0} and the variance {1,1,3,1} for {Q(a = 1),Q(a =
2),log(w),log(B)}, respectively. We set the meta-meta-parameters for learning rate as
o, = 0.05, and inverse temperature as o3 = 0.005 . The reward is » = 5 when delivered,
and otherwise r = 0.

Figure 3(a) shows the simulated actions and rewards of 1000 trials by Q-learning agent
with o = 0.05 and $ = 1. From this observable sequence of y; = (s, a;, ), the particle
filter estimated the time course of action-values, Q:(a = 1) and Q:(a = 2), learning
rate «; and inverse temperature 3,. The expected values of the marginal distribution of
these hidden variables (Figure 3(b)-(e) solid line) are in good agreement with the true value
(Figure 3(b)-(e) dotted line) recorded in simulation. Although the initial estimates were
inevitable inaccurate, the particle filter are good estimation of each variable after about 200
observations.

To test robustness of the particle filter approach, we generated behavioral sequences of Q-
learners with different combinations of « = {0.01,0.15,0.1,0.5} and g8 = {0.5,1,2,4},
and estimated meta-parameters « and 3. Even if we set a broad initial distribution of «
and s, the expectation value of the estimated values are in good agreement with the true
value. When the agent had the smallest learning rate & = 0.01, the particle filter tended to
underestimated 3 and overestimated «.

5 Application to monkey behavioral data

We applied the particle filter approach to monkey behavioral data of the two-armed bandit
problem [4]. In this task, the monkey faces a lever that can be turned to either left or right.
After adjusting a lever at center position and holding it for one second, the monkey turned
the lever to left or right based on the reward probabilities assigned on each direction of
lever turn. Probabilities [PL, PR] of reward delivery on the left and right turns, respectively
were varied across three trial blocks as: [PL, PR]=[0.5, 0.5]; [0.1, 0.9]; [0.9, 0.1]. In each
block, the monkeys shifted selection to the direction with higher reward probability.

We used 1000 particles and Gaussian initial distribution with the mean (2,2,3,0) and
the variance (2,2,1,1) for x = (Q(R),Q(L),log(w),log(B)). We set the meta-meta-
parameters for learning rate as o, = 0.05 , and for inverse temperature as o3 = 0.001
. The reward was r» = 5 when delivered, and otherwise r = 0.

Figure 5(a) shows the sequence of selected actions and rewards in a day. Figure 5(b) shows
the estimated action-values Q(a = L) and Q(a = R) for the left and right lever turns. The
estimated action value Q(L) for left action increased in the blocks of [PL, PR] =[0.9, 0.1],
decreased in the blocks of [0.1, 0.9], and fluctuated in the blocks of [0.5, 0.5].

We tested whether the estimated action-value and meta-parameters could reproduce the
action sequences. We quantified the prediction performance of action sequences by the
likelihood of the action data given the estimated model,

N
1
Ly = N_T+1 ;logﬁ(a = al{ar,r1, o a1, rem1h, M, 0y), (®)
where p(a) is estimated probability of action at ¢ by model M and estimated parameters 6.
from the sequence of past experience {a1,r1, -, at—1,7¢—1}

Figure 6(b) shows the distribution of the likelihood computed for the action data of 74
sessions. We compared the predictability of the proposed method, Q-learning model with
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Figure 3: Estimation of hidden variables by simulated actions and rewards of Q-learning
agent. (a) Sequence of simulated actions and rewards by Q-learning agent: Circles are
rewarded trials. Dots are non-rewarded trials; (b)-(e) Time course of the hidden variables
of the model (dotted line) and of the expectation value (solid line) of estimation by particle
filter; (b)(c) Q-values for each action, (d) learning rate , and (e) action randomness . Shaded
areas indicate the blocks of [0.9, 0.1] or [0.1, 0.9]. White areas indicate [0.5, 0.5].
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Figure 4: Expected values of estimated meta-parameter from the 1000 trials generated with
different settings. The side boxes show initial distribution of particles.
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Figure 5: Expected values of estimated hidden variables by animal behavioral data: (2)
action and reward sequences; Circles are rewarded trials; Dots indicate no rewarded trials.
(b)-(d) Estimated value of (b) action value function , (c) learning rate, and (d) action ran-
domness. Shaded areas indicate the blocks of [0.9, 0.1] or [0.1, 0.9]. White areas indicate
[0.5, 0.5].
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Figure 6: Comparing models: (a) An example of contour plot of log likelihood for predicted
action by a fixed meta-parameter Q-learning model. Fixed meta-parameter method needs
to find the optimal learning rate « and the inverse temperature 3. (b) Distributions of
log likelihood of action prediction by proposed particle filter method and by fixed meta-
parameter Q-learning model with the optimal meta-parameter: The top and bottom limits
of each box show the lower quartile and the upper quartile, and the center of the notch is
the median. Crosses indicate outliers. Boxplot notches show the 95% confidence interval
for the median. The median of log likelihood of action prediction by proposed method is
significantly larger than one by the fixed meta-parameter method ( Wilcoxon signed rank
test; p < 0.0001).



estimating meta-parameters by particle filtering, to the fixed meta-parameter Q-learning
model, which used the fixed optimal learning rate « and inverse temperature 3 in the mean-
ing of maximizing likelihood of action prediction in a session (Figure 6(a)).

The particle filter could predict actions better than fixed meta-parameter Q-learning model
with the optimal meta-parameter (Wilcoxon signed rank test; p < 0.0001). This result
indicated that the particle filtering method successfully track the change of the meta-
parameters, the learning rate « and the inverse temperature 3, through the sessions.

6 Discussion

An advantage of the proposed particle filter method is that we do not have to hand-tune
meta-parameter, such as learning rate. Although we still have to set the meta-meta- param-
eters, which defines dynamics of meta-parameters, the behavior of the estimates are less
sensitive to their settings, compared to the setting of the meta-parameters. Dependency on
the initial distribution of the hidden variables decreases with increasing number of data.

An extension of this study would be to model selection objectively using a hierarchical
Bayesian approach. For example, the several possible reinforcement learning models, e.g.
Q-learning, Sarsa algorithm or policy gradient algorithm, could be compared in term of
measure of the posterior probability of models.

Recently, computational models with heuristic meta-parameters have been successfully
used to generate regressors for neuroimaging data [5]. Bayesian method enables gener-
ating such regressors in a more objective, data-driven manner. We are going to apply the
current method for characterizing neural recording data from the monkey.

7 Conclusion

We proposed a particle filter method to estimate internal parameters and meta-parameters
of a reinforcement learning agent from observable variables. Our method is a powerful
tool for interpreting neurophysiological and neuroimaging data in light of computational
models, and to build better models in light of experimental data.
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