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Abstract

This paper presents VLSI circuits with continuous-valued proba-
bilistic behaviour realized by injecting noise into each computing
unit(neuron). Interconnecting the noisy neurons forms a Contin-
uous Restricted Boltzmann Machine (CRBM), which has shown
promising performance in modelling and classifying noisy biomed-
ical data. The Minimising-Contrastive-Divergence learning algo-
rithm for CRBM is also implemented in mixed-mode VLSI, to
adapt the noisy neurons’ parameters on-chip.

1 Introduction

As interests in interfacing electronic circuits to biological cells grows, an intelligent
embedded system able to classify noisy and drifting biomedical signals becomes im-
portant to extract useful information at the bio-electrical interface. Probabilistic
neural computation utilises probability to generalise the natural variability of data,
and is thus a potential candidate for underpinning such intelligent systems. To
date, probabilistic computation has been unable to deal with the continuous-valued
nature of biomedical data, while remaining amenable to hardware implementa-
tion. The Continuous Restricted Boltzmann Machine(CRBM) has been shown to
be promising in the modelling of noisy and drifting biomedical data[1][2], with
a simple Minimising-Contrastive-Divergence(MCD) learning algorithm[1][3]. The
CRBM consists of continuous-valued stochastic neurons that adapt their “internal
noise” to code the variation of continuous-valued data, dramatically enriching the
CRBM’s representational power. Following a brief introduction of the CRBM, the
VLSI implementation of the noisy neuron and the MCD learning rule are presented.

2 Continuous Restricted Boltzmann Machine

Let si represent the state of neuron i, and wij the connection between neuron i and
neuron j. A noisy neuron j in the CRBM has the following form:

sj = ϕj

(

∑

i

wijsi + σ · Nj(0, 1)

)

, (1)
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Figure 1: (a)20 two-dimensional artificial training data (b)20-step reconstruction
by the CRBM after 30,000 epochs’ fixed-step training

with ϕj(xj) = θL + (θH − θL) ·
1

1 + exp(−ajxj)
(2)

where Nj(0, 1) refers to a unit Gaussian noise with zero mean, σ a noise-scaling
constant, and ϕj(·) the sigmoid function with asymptotes at θH and θL. Parameter
aj is the “noise-control factor”, controlling the neuron’s output nonlinearity such
that a neuron j can learn to become near-deterministic (small aj), continuous-
stochastic (moderate aj), or binary-stochastic (large aj)[4][1].

A CRBM consists of one visible and one hidden layer of noisy neurons with inter-
layer connections defined by a weight matrix {W}. By minimizing the “Contrastive
Divergence” between the training data and the one-step Gibbs sampled data [3],
the parameters {wij} and {aj} evolve according to the following equations [1]

∆ŵij = ηw(〈sisj〉 − 〈ŝiŝj〉) (3)

∆âj =
ηa

a2
j

(〈

s2
j

〉

−
〈

ŝj
2
〉)

(4)

where ŝi and ŝj denote the one-step sampled state of neuron i and j respectively,
and 〈·〉 refers to the expectation over all training data. ηw and ηa denote the learning
rates for parameters {wij} and {aj}, respectively. Following [5], Eq.(3)and(4) are
further simplified to fixed-step directional learning, rather than variable accurate-
step learning, as following.

∆ŵij = ηwsign
(

〈sisj〉4 − 〈ŝiŝj〉4
)

(5)

∆âj = ηasign
(

〈

s2
j

〉

4
−
〈

ŝj
2
〉

4

)

(6)

Note that the denominator 1/a2
j in Eq.(4) is also absorbed and 〈·〉

4
indicates that

the expectation operator will be approximated by the average of four data as op-
posed to all training data. To validate the simplification above, a CRBM with 2
visible neurons and 4 hidden neurons was trained to model the two-dimensional
data distribution defined by 20 training data (Fig.1a), with ηw = 1.5, ηa = 15 for
visible neurons, and ηa = 1 for hidden neurons 1. After 30,000 training updates,
the trained CRBM reconstructed the same data distribution (Fig.1b) from 200 ini-
tially random-distributed data, indicating that the simplification above reduces the
hardware complexity at the cost of a slightly slower convergence time.

1constants θH = −θL = 1 and σ = 0.2 for all neurons
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Figure 2: The circuits of the four-quadrant multiplier (a)one computing cell (b)full
circuit composed of two computing cell

3 Noisy neuron with variable nonlinearity

The circuits were fabricated on the AMS 0.6µm 2P3M CMOS process, which allows
a power supply voltage of five volts. Therefore, the states of neurons {si} and the
corresponding weights {wij} are designed to be represented by voltage in [1.5, 3.5]V
and [0,5]V respectively, with both arithmetical zeros at 2.5V. As both si and wij

are real numbers, a four-quadrant multiplier is required to calculate wijsi

3.1 Four-quadrant multiplier

While the Chible four-quadrant multiplier [6] has a simple architecture with a wide
input range, the reference zero of one of its inputs is process-dependent. Though
only relative values of weights matter for the neurons, the process-dependent refer-
ence becomes nontrivial if the same four-quadrant multiplier is used to implement
the MCD learning rule. We thus proposed a ‘modified Chible multiplier’ composed
of two computing cells, as shown in Fig.2, to allow external control of reference
zeros of both inputs.

Each computing cell contains two differential pairs biased by two complementary
branches, Mn1-Mn2 and Mp1-Mp2. (Io1−Io2) is thus proportional to (Vw−Vth,n1−
nVth,n2)(Vsi − Vsr) when Vw > (Vth,n1 + nVth,n2)

2, and (Io3 − Io4) proportional to
(n2V dd−Vw −Vth,p1−nVth,p2)(Vsr −Vsi) when Vw < (n2V dd−Vth,p1 −nVth,p2)[6].
Subject to careful design of the complementary biasing transistors[6], (Vth,n1 +
nVth,n2) ≈ (n2V dd − Vth,p1 − nVth,p2) ≈ V dd/2. Combining the two differential
currents then gives

Io = (Io1 + Io3) − (Io2 + Io4) = I(Vw) · (Vsi − Vsr) (7)

With wi input to one computing cell and wr to the other cell, as shown in Fig.2b,
M1-M6 generates an output current Iout ∝ (wi − wr)(si − sr). The measured DC
characteristic from a fabricated chip is shown in Fig.4(a)

3.2 Noisy neuron

Fig.3 shows the circuit diagram of a noisy neuron. The four-quadrant multipliers
output a total current proportional to

∑

i wijsi, while the differential pair, Mna and

2
n is the slope factor of MOS transistor, and Vth,x refers to the absolute value of

transistor Mx’s threshold voltage.
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Figure 3: The circuit diagram of a noisy neuron

Mnb, transforms noise voltage vni into a noise current in = gm(vni − Vnr), where
Vsigma controls the transconductance gm and thus scales the noise current as σ in
Eq.(1). The current-to-voltage converter, composed of an operational amplifier and
an voltage-controlled active resistor[7], then sums all currents, outputting a voltage
Vx = Vsr − isum ·R(Vaj) to the sigmoid function.

The exponential nonlinearity of the sigmoid function is achieved by operating the
PMOS differential pair, Mbp1-Mbp2, in the lateral-bipolar mode [8], resulting in a
differential output current as following

io = ic1 − ic2 = Ib · φ(
Isum · R(Vaj)

Vt

) (8)

where φ(·) denotes the ϕ(·) with θH = −θL = 1, and Vt = kT/q is the thermal
voltage. The resistor RL finally converts io into a output voltage vo = ioRL + Vsr .
Eq.(8) implies that Vaj controls the feedback resistance of the I-V converter, and
consequently adapts the nonlinearity of the sigmoid function (which appears as aj

in Eq.(1)). With various Vaj , the measured DC characteristic (chip result) of the
sigmoid function is shown in Fig.4b.
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Figure 4: The measured DC characteristics of (a) four-quadrant multiplier
(b)sigmoid function with variable nonlinearity controlled by Vaj
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Figure 5: (a)The measured output of a noisy neuron (upper trace) and the switching
signal (lower trace) that samples Vsj (b) Zooming-in of the second sample in(a)

Fig.5 shows the measured output of a noisy neuron (upper trace) with {si} sweeping
between 1.5 and 3.5V, {wi}=4V, Vaj=1.8V, and vni generated by LFSR (Linear
Feedback Shift Register) [9] with an amplitude of 0.4V. The {si} and {wi} above
forced the neuron’s output to sweep a sigmoid-shaped curve as Fig.4b, while the
input noise disturbed the curve to achieve continous-valued probabilistic output. A
neuron state Vsj was sampled periodically and held with negligible clock feedthrough
whenever the switch opened(went low).

4 Minimising-Contrastive-Divergence learning on chip

The MCD learning for the Product of Experts[3] has been successfully implemented
and reported in [10]. The MCD learning for CRBM is therefore implemented simply
by replacing the following two circuits. First, the four-quadrant multiplier described
in Sec.3.1 is substituted for the two-quadrant multiplier in [10] to enhance learning
flexibility; secondly, a pulse-coded learning circuit, rather than the analogue weight-
changing circuit in [10], is employed to allow not only accurate learning steps but
also refresh of dynamically-held parameters.

4.1 MCD learning for CRBM

Fig.6 shows the block diagram of the VLSI implementation of the MCD learning
rules for the noisy neurons, along with the digital control signals. In learning mode
(LER/REF=1), the initial states si and sj are first sampled by clock signals CKsi

and CKsj , resulting in a current I+ at the output of four-quadrant multiplier.
After CK+ samples and holds I+, the one-step reconstructed states ŝi and ŝj are
sampled by CKsip and CKsjp to produce another current I

−
. CKq then samples

and holds the output of the current subtracter Isub, which represents the difference
between initial data and one-step Gibbs sampled data. Repeating the above clocking
sequence for four cycles, four Isub are accumulated and averaged to derive Iave,
representing 〈sisj〉4−〈ŝiŝj〉4 in equation(5). Finally, Iave is compared to a reference
current to determine the learning direction DIR, and the learning circuit, triggered
by CKup, updates the parameter once. The dash-lined box represents the voltage-
limiting circuit used only for parameter {aj}, whose voltage range should be limited
to ensure normal operation of the voltage-controlled active resistor in Fig.3. In
refresh mode (LER/REF=1), the signal REFR rather than DIR determines the
updating direction, maintaining the weight to a reference value.
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Figure 6: (a)The block diagram of VLSI implementation of MCD learning rules
described in Eq.(5)(6) (b)The digital control signals

The subtracter, accumulator and current comparator in Fig.6 are dominated by the
dynamic current mirror[11] and are the same as those used in [10]. The following
subsections therefore focus on the pulse-coded learning circuit and the measurement
results of on-chip MCD learning.

4.2 The pulse-coded learning circuit

The pulse-coded learning circuit consists of a pulse generator (Fig.7a) and the learn-
ing cell proposed in [12] (Fig.7b). The stepsize of the learning cell is adjustable
through VP and VN in Fig.7b [12]. However, transistor nonlinearities and process
variations do not allow different and accurate learning rates to be set for various
parameters in the same chip ({aj} and {wij} in our case). We therefore apply a
width-variable pulse to the enabling input (EN) of the learning cell, controlling the
learning step precisely by monitoring the pulse width off-chip. As the input capac-
itance of each learning cell is less than 0.1pF, one pulse generator can control all
the learning cells with the same learning rate. The simulation in Sec.2 implies that
only three pulse generators are required for ηw, ηav, and ηah. The pulse generator
is therefore a simple way to achieve accurate control.

The pulse generator is largely a D-type flip-flop whose output Vpulse is initially
reset to low via reset. Vpulse then goes high on the rising edge of CKup, while the
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Figure 7: The pulse-coded learning circuit composed of (a)a pulse generator and
(b)a learning cell proposed in [12]
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Figure 8: The voltage-limiting circuit

capacitor Cdelay prevents Vd from going from high to low instantly. Eventually,
Vpulse is reset to zero as soon as Vd is discharged. During the positive pulse, the
learning cell charges or discharges the voltage stored on Cw[12], according to the
directional input INC/DEC. Varying Vmu controls the pulse width accurately from
10ns (Vη = 2.5V ) to 5us (Vη = 0.9V ), amounting to learning stepsize from 1mV to
500mV as VN = 0.75V , VP = 4.29V , and Cw = 1pF .

4.3 Voltage-limiting circuit

Although Eq.(6) indicates that {aj} can be adapted with the same learning circuit
simply by substituting sj and ŝj for si and ŝi in Fig.6, the voltage Vaj should
be confined in [1,3]V, to ensure normal operation of the voltage-controlled active
resistor in Fig.3. A voltage-limiting circuit as shown in Fig.8 is thus designed to
limit the range of Vaj , defined by Vmax and Vmin through two voltage comparators.
As Vmax > Vaj > Vmi, DIR equals Vcomp, i.e. the MCD learning rule decides
the learning direction. However, DIR goes high to enforce decreasing Vaj when
Vaj > Vmax > Vmin, while DIR goes low to enforce increasing Vaj when Vmax >
Vmin > Vaj .

4.4 On-chip learning

Two MCD learning circuits, one for {wij} and the other for {aj}, have been fabri-
cated successfully. Fig.9 shows the measured on-chip learning of both parameters
with (a) different learning rates (b) different learning directions. To ease testing,
si and ŝi are fixed at 3.5V, while sj and ŝj alternate between 1.5V and 3.5V, as
shown by the traces SJ and SJ P in Fig.9. With the reference zero being defined at

(a) (b)

Figure 9: Measurement of parameter aj and wij learning in (a)different learning
rates (b)different directions



2.5V, the parameters should learn down when sj=3.5V and ŝj=1.5V, and learn up
when sj=1.5V and ŝj=3.5V.

In Fig.9a, both parameters were initially refreshed to 2.5V when signal LERREF is
low, and subsequently started to learn up and down in response to the changing SJ
and SJ P as LERREF goes high. As controlled by different pulse widths (PULSE1
and PULSE2), the two parameters were updated with different stepsizes (10mV and
34mV) but in the same direction. The trace of parameter aj shows digital noise
attributable to sub-optimal layout, and has been improved in a subsequent design.
In Fig.9b, both parameters were refreshed to 3.5V, a voltage higher than Vmax=3V
set for aj . Therefore, the learning circuit forces aj to decrease toward Vmax, while
wij remains learning up and down as Fig.9a.

5 Conclusion

Fabricated CMOS circuits have been presented and the implemention of noisy neural
computation that underlies the CRBM has been demonstrated. The promising mea-
sured results show that the CRBM is, as has been inferred in the past[1], amenable
to mixed-mode VLSI. This makes possible a VLSI system with continuous-valued
probabilistic behaviour and on-chip adaptability, adapting its “internal noise” to
model the “external noise” in its environment. A full CRBM system with two vis-
ible and four hidden neurons has thus been implemented to examine this concept.
The neurons in the proof-of-concept CRBM system are hard-wired to each other
and the multi-channel uncorrelated noise sources implemented by the LFSR [9]. A
scalable design will thus be an essential next step before pratical biomedical appli-
cations. Furthermore, the CRBM system may open the possibility of utilising VLSI
intrinsic noise for computation in the deep-sub-miron era.
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