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Abstract

We formulate linear dimensionality reduction as a semi-parametric esti-
mation problem, enabling us to study its asymptotic behavior. We gen-
eralize the problem beyond additive Gaussian noise to (unknown) non-
Gaussian additive noise, and to unbiased non-additive models.

1 Introduction

Factor models are often natural in the analysis of multi-dimensional data. The underly-
ing premise of such models is that the important aspects of the data can be captured via a
low-dimensional representation (“factor space”). The low-dimensional representation may
be useful for lossy compression as in typical applications of PCA, for signal reconstruc-
tion as in factor analysis or non-negative matrix factorization [1], for understanding the
signal structure [2], or for prediction as in applying SVD for collaborative filtering [3]. In
many situations, including collaborative filtering and structure exploration, the “important”
aspects of the data are the dependencies between different attributes. For example, in col-
laborative filtering we rely on a representation that summarizes the dependencies among
user preferences. More generally, we seek to identify a low-dimensional space that captures
thedependenaspects of the data, and separate them fratependentariations. Our goal

is to relax restrictions on the form of each of these components, such as Gaussianity, addi-
tivity and linearity, while maintaining a principled rigorous framework that allows analysis

of the methods.

We begin by studying the probabilistic formulations of the problem, focusing on the as-
sumptions that are made about the dependent, low-rank “signal” and independent “noise”
distributions. We consider a general semi-parametric formulation that emphasizes what is
being estimated and allows us to discuss asymptotic behavior (Section 2). We then study
the standard (PCA) approach, show that it is appropriate for additive i.i.d. noise (Section 3),
and present a generic estimator that is appropriate also for unbiased non-additive models
(Section 4). In Section 5 we confront the non-Gaussianity directly, develop maximum-
likelihood estimators in the presence of Gaussian mixture additive noise, and show that the
consistency of such maximum-likelihood estimators should not be taken for granted.



2 Dependent Dimensionality Reduction

Our starting point is the problem of identifying linear dependencies in the presence of in-
dependent identically distributed Gaussian noise. In this formulation, we observe a data
matrix Y € ®"*? which we assume was generated¥as= X + Z, where the dependent,
low-dimensional component € R"*¢ (the “signal”) is a matrix of rank and the inde-
pendent componerZ (the “noise”) is i.i.d. zero-mean Gaussian with varianée We can

write down the log-likelihood ofX as;—zl\ Y — X|gr0+ Const (wheré|g,., is the Frobenius,

or sum-squared, norm) and conclude that, regardless of the vaddntee maximum-
likelihood estimator ofX is the rank-kmatrix minimizing the Frobenius distance. It is
given by the leading components of the singular value decompositidn’of

Although the above formulation is perfectly valid, there is something displeasing about
it. We view the entire matrixX as parameters, and estimate them according to a single
observationY. The number of parameters is linear in the data, and even with more data,
we cannot hope to estimate the parameters (entri&3g lmeyond a fixed precision. What we
canestimate with more data rows is the rankew-space ofX. Consider the factorization

X = UV’, whereV’ ¢ ®F*4 spans this “signal space”.

The dependencies of each revof Y are captured by a row Q
u of U, which, through the parametevs ando specifies
how each entry; is generateihdependentlgiven .2 () (o) o (o)

A standard parametric analysis of the model would vievas a random vector (rather

than parameters) and impose some, possibly parametric, distribution over it (interestingly,
if u is Gaussian, the maximum-likelihood reconstruction is the same Frobenius low-rank
approximation [4]). However, in the analysis we started with, we did not make any as-
sumptions about the distribution af beyond its dimensionality. The model class is then
non-parametric, yet we still desire, and are able, to estimate a parametric aspect of the
model: The estimator can be seen as a ML estimator for the signal subspace, where the
distribution overu is unconstrained nuisance.

Although we did not impose any form on the distributanwe did impose a strict form
on the conditional distributiong; |u: we required them to be Gaussian with fixed variance
o? and mean1V;. We would like to relax these requirements, and require onlysthabe

a product distribution, i.e. that its coordinatggu be (conditionally) independent. Since
u is continuous, we cannot expect to forego all restrictiong.gn;, but we can expect to
set up a semi-parametric problem in whigha may lie in an infinite dimensional family
of distributions, and is not strictly parameterized.

Relaxing the Gaussianity leads to linear additive mogtelsuV”’ + z, with z independent

of u, but not necessarily Gaussian. Further relaxing the additivity is appropriate, e.g., when
the noise has a multiplicative component, or when the featurgsané not real numbers.
These types of models, withkemowndistributiony;|x;, have been suggested for classifi-
cation using logistic loss [5], whey; |x; forms an exponential family [6], and in a more
abstract framework [7]. Relaxing the linearity assumptios: uV”’ is also appropriate in

many situations. Fitting a non-linear manifold by minimizing the sum-squared distance can
be seen as a ML estimator fofu = g(u) + z, wherez is i.i.d. Gaussian ang : % — R¢
specifies some smooth manifold. Combining these ideas leads us to discuss the conditional
distributionsy; |g;(u), ory;|u directly.

In this paper we take our first steps is studying this problem, and relaxing restrictions on

1A mean term is also usually allowed. Incorporating a non-zero mean is straight forward, and in
order to simplify derivations, we do not account for it in most of our presentation.

2\We use uppercase letters to denote matrices, and lowercase letters for vectors, and use bold type
to indicate random quantities.



y|u. We continue to assume a linear moge: uV”’ and limit ourselves to additive noise
models and unbiased models in whigly|x] = x. We study the estimation of the rank-&
signal space in whick resides, based on a samplerofndependent observations f
(forming the rows ofY), where the distribution on is unconstrained nuisance.

In order to study estimators for a subspace, we must be able to compare two subspaces. A
natural way of doing so is through tisanonical angledetween them [8]. Define the angle
between a vectar; and a subspadg, to be the minimal angle betweepnand anyv, € V5.

The largest canonical angle between two subspaces is then the maximal angle between a
vector inv; € V; and the subspacdg,. The second largest angle is the maximum over all
vectors orthogonal to the;, and so on. It is convenient to think of a subspace in terms

of the matrix whose columns span it. Computationally, if the columnig;aind V5 form
orthonormal bases af; andV,, then the cosines of the canonical angles betwaeand

V, are given by the singular values BfV,. Throughout the presentation, we will slightly
overload notation and use a matrix to denote also its column subspace. In particular, we
will denote byVj the true signal subspace, i.e. such that uly'.

3 The L, Estimator

We first consider the “standard” approach to low-rank approximation—minimizing the sum
squared errot. This is the ML estimator when the noise is i.i.d. Gaussian. Butlthe
estimator is appropriate also in a more general setting. We will show thattestimator

is consistent for any i.i.d. additive noise with finite variance (as we will see later on, this is
more than can be said for some ML estimators).

The L, estimator of the signal subspace is the subspace spanned by the leading eigenvectors

of the empirical covariance matriX,, of y, which is a consistent estimator of the true
covariance matrix\y-, which in turn is the sum of the covariance matricesxofnd z,
whereA x is of rank exactl§ &, and ifz is i.i.d., Ay = o%1.

Lets; > s9 > --- > s, > 0 be the non-zero eigenvalues &f. Sincez has variance ex-
actly o2 in any direction, the principal directions of variation are not affected by it, and the
eigenvalues of\y are exactlys; + 02,..., s, + 02,02,..., 02, with the leading: eigen-
vectors being the eigenvectors &f . This ensures an eigenvalue gapspf> 0 between

the invariant subspace dfy spanned by the eigenvectors/of% and its complement, and

we can bound the norm of the canonical sines betWw@eand the leading eigenvectors of
A, by ‘A%kAY' [8]. Since\f\n —Ay| — 0a.s., we conclude that the estimator is consistent.

4 The Variance-Ignoring Estimator

We turn to additive noise with independent, but not identically distributed, coordinates. If
the noise variances are known, the ML estimator corresponds to minimizing the column-
weighted (inversely proportional to the variances) Frobenius norvi ef X, and can be
calculated from the leading eigenvectors of a scaled empirical covariance matrix [9]. If the
variances are not known, e.g. when the scale of different coordinates is not known, there is
no ML estimator: at least coordinates of each can always be exactly matched, and so
the likelihood is unbounded when upkovariances approach zero.

3We call this anL, estimator not because it minimizes the mattixnorm|Y — X |», which it
does, but because it minimizes the vedigenorms|y — z3.

“We should also be careful about signals that occupy only a proper subspgacenfl be satisfied
with any rank-ksubspace containing the supportgfbut for simplicity of presentation we assume
this does not happen andis of full rank k.
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strength. (b) Random rank-2 subspace®ifi, 500 sample rows, and Gaussian noise with varying
distortion (mean over 200 simulations, bars are one standard deviations tall) (c) Observations are
exponentially distributed with means in rank-2 subspacg i d 1 41411y

The L, estimator is not satisfactory in this scenario. The covariance magriis still diag-

onal, but is no longer a scaled identity. The additional variance introduced by the noise is
different in different directions, and these differences may overwhelm the “signal” variance
alongVy, biasing the leading eigenvectors &f-, and thus the limit of thd., estimator,
toward axes with high “noise” variance. The fact that this variability is independent of the
variability in other coordinates is ignored, and theestimator is asymptotically biased.

Instead of recovering the directions of greatest variability, we recover the covariance struc-
ture directly. In the limitA,, — Ay = Ax + Az, a sum of a rank-knatrix and a diagonal
matrix. In particular, the non-diagonal entries/of approach those of x. We can thus

seek a rank-fnatrix A y approximating\.,, e.g. in a sum-squared sense, except on the di-
agonal. This is a (zero-on@)eightedow-rank approximation problem. We optimize

by iteratively seeking a rank-approximation ofA,, with diagonal entries filled in from

the last iterate ofs x (this can be viewed as an EM procedure [5]). The row-space of the
resultingA x is then an estimator for the signal subspace. Note that thestimator is the
row-space of the rank-katrix minimizing theunweightedsum-squared distance 19, .

Figures 1(a,b) demonstrate this variance-ignoring estimator on simulated data with non-
identical Gaussian noise. The estimator reconstructs the signal-space almost as well as the
ML estimator, even though it does not have access to the true noise variance.

Discussing consistency in the presence of non-identical noise with unknown variances is
problematic, since the signal subspace is not necessarily identifiable. For example, the
combined covariance matriXy = (21) can arise from a rank-one signal covariance
Ax = (¢ l}a) for any 1 < a < 2, each corresponding to a different signal subspace.
Counting the number of parameters and constraints suggests identifiabilitykwheh—

Ld‘gl‘l, but this is by no means a precise guarantee. Anderson and Rubin [10] present

several conditions oA x which are sufficient for identifiability but require < {gj and
other weaker conditions which are necessary.

Non-Additive Noise The above estimation method is also useful in a less straight-
forward situation. Until now we have considered only additive noise, in which the dis-
tribution of y; — x; was independent of;. We will now relax this restriction and allow
more general conditional distributioys|x;, requiring only tha€ [y;|x;] = x;. With this
requirement, together with the structural constraintiggependent giver), for anyi # j:

Covlyi,y;] = Elyiy;] — ElyilEly;] = E[E [yiy;Ix]] — E[E [y:[x]]E [E [y;]x]]
= E[E[y:[x|E[y;[x]] — E[x]E [x;] = E [xix;] — E [x;]E [x;] = Cov[x;, x;].



As in the non-identical additive noise casey, agrees withA x except on the diagonal.
Even if y;|x; is identically conditionally distributed for all, the differenceAy — Ax is

notin general a scaled identity: Vi;] = E [E [vZ|x;] — E [yi\xi]ﬂ +E [E [yi|xi]2} -

Ely:]* = E[Var[yi|x:]] + Var[x,]. Unlike the additive noise case, the varianceygli;
depends ok;, and so its expectation depends on the distributiox; of

These observations suggest using the variance-ignoring estimator. Figure 1(c) demonstrates
how such an estimator succeeds in reconstruction whpq is exponentially distributed

with meanx;, even though the standafd estimator is not applicable. We cannot guaran-

tee consistency because the decomposition of the covariance matrix might not be unique,
but whenk < LgJ this is not likely to happen. Note that if the conditional distribution

y|x is known, even if the decomposition is not unique, the correct signal covariance might
be identifiable based on the relationship between the signal marginals and the expected
conditional variance of of |x, but this is not captured by the variance-ignoring estimator.

5 Low Rank Approximation with a Gaussian Mixture Noise Model

We return to additive noise, but seeking better estimation with limited data, we confront
non-Gaussian noise distributions directly: we would like to find the maximum-likelihood
X whenY = X + Z, andZ;; are distributed according to a Gaussian mixtyrg(z;;) =

Sty pe(2ma2)Z exp((2ij — pe)?/(207)).

To do so, we introduce latent variabl€s; specifying the mixture component of the noise
atY;;, and solve the problem using EM. In tBe&pectation step, we compute the posterior
probabilitiesPr (C,;|Y;;; X) based on the current low-rank parameter ma¥ix In the
Maximization step we need to find the low-rank matdix that maximizes the posterior
expected log-likelihood:

Ec|y [logPr (Y = X + Z|C; X)] Z Z Pr(G; 7_‘)‘Y” (X1, —(Yi,+1e))> + Const
= —% Z Wi Xij — ij) + Const Q)
o iy = 3G g = v, 4 el

This is aweightedFrobenius low-rank approximation (WLRA) problem. Equipped with a
WLRA optimization method [5], we can now perform EM iteration in order to find the ma-
trix X maximizing the likelihood of the observed matriix At eachM step it is enough to
perform a single WLRA optimization iteration, which is guaranteed to improve the WLRA
objective, and so also the likelihood. The method can be augmented to hanokreown
Gaussian mixture, by introducing an optimization of the mixture parameters atMach
iteration.

Experiments with GSMs We report here initial experiments with ML estimation using
bounded Gaussian scale mixtures [11], i.e. a mixture of Gaussians with zero mean, and
variance bounded from bellow. Gaussian scale mixtures (GSMs) are a rich class of sym-
metric distributions, which include non-log-concave, and heavy tailed distributions. We
investigated two noise distributions: a 'Gaussian with outliers’ distribution formed as a
mixture of two zero-mean Gaussians with widely varying variances; and a Laplace dis-
tribution p(z) o e~!*!, which is an infinite scale mixture of Gaussians. Figures 2(a,b)
show the quality of reconstruction of the estimator and the ML bounded GSM estima-

tor, for these two noise distributions, for a fixed sample size of 300 rows, under varying
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with Laplace noise. Insert: sine norm of ML est. plotted against sine nori,adst. (b)
Random rank-2 subspace®t° with 0.99A/(0, 1) + 0.01A/(0, 100) noise. (c) span(2,,1)’ C ®*
with 0.9N (0, 1) + 0.1N(0, 25) noise. The ML estimator converges (.34, 1,1). Bars are one
standard deviation tall.

signal strengths. We allowed ten Gaussian components, and did not observe any significant
change in the estimator when the number of components increases.

The ML estimator is overall more accurate than fheestimator—it succeeds in reliably
reconstructing the low-rank signal for signals which are approximately three times weaker
than those necessary for reliable reconstruction usind.shestimator. The improvement

in performance is not as dramatic, but still noticeable, for Laplace noise.

Comparison with Newton’s Methods Confronted with a general additive noise distri-
bution, the approach presented here would be to rewrite, or approximate, it as a Gaussian
mixture and use WLRA in order to leatki using EM. A different approach is to consider-

ing the second order Taylor expansions of the log-likelihood, with respect to the entries of
X, and iteratively maximize them using WLRA [5, 7]. Such an approach requires calculat-
ing the first and second derivatives of the density. If the density is not specified analytically,
or is unknown, these quantities need to be estimated. But beyond these issues, which can be
overcome, lies the major problem of Newton’s method: the noise density must be strictly
log-concave and differentiable. If the distribution is not log-concave, the quadratic expan-
sion of the log-likelihood will be unbounded and will not admit an optimum. Attempting

to ignore this fact, and for example “optimizind’ given V' using the equations derived

for non-negative weights would actually drive us towards a saddle-point rather then a local
optimum. The non-concavity does not only mean that we are not guaranteed a global opti-
mum (which we are not guaranteed in any case, due to the non-convexity of the low-rank
requirement)— it does not yield even local improvements. On the other hand, approximat-
ing the distribution as a Gaussians mixture and using the EM method, might still get stuck
in local minima, but is at least guaranteed local improvement.

Limiting ourselves to only log-concave distributions is a rather strong limitation, as it
precludes, for example, all heavy-tailed distributions. Consider even the “balanced tail”
Laplace distributionp(z) o e~I?l. Since the log-density is piecewise linear, a quadratic
approximation of it is a line, which of course does not attain a minimum value.

Consistency Despite the gains in reconstruction presented above, the ML estimator may
suffer from an asymptotic bias, making it inferior to the estimator on large samples. We
study the asymptotic limit of the ML estimator, for a known product distributiowe first
establish a necessary and sufficient condition for consistency of the estimator.

The ML estimator is the minimizer of the empirical mean of the random fundtidn) =
min, (— log p(y — «V’)). When the number of samples increase, the empirical means con-
verge to the true means, and&f®(17)] < E[®(V2)], then with probability approaching



oneV, will not minimize E [®(V)]. For the ML estimator to be consiste&[® (V)] must
be minimized by}, establishing a necessary condition for consistency.

The sufficiency of this condition rests on thaiform convergence of E [®(V/)]}, which

does not generally exist, or at least on unifodimergencefrom E [®(1)]. It should be

noted that the issue here is whether the ML estimator at all converges, since if it does con-
verge, it must converge to the minimizer 6f®(1")]. Such convergence can be demon-
strated at least in the special case when the marginal noise deqsityis continuous,
strictly positive, and has finite variance and differential entropy. Under these conditions,
the ML estimator is consistent if and onlylif, is the unique minimizer o [&(V)].

When discussinge [®(V)], the expectation is with respect to the noise distribuaod

the signal distribution. This is not quite satisfactory, as we would like results which are
independent of the signal distribution, beyond the rank of its support. To do so, we must
ensure the expectation @{1") is minimized onl/, for all possible signals (and not only in
expectation). Denote the objectiyéy; V) = min, (—logp(y — uV")). For anyz € R9,
consider (V; z) = E, [¢(x + z; V)], where the expectation is only over the additive noise

z. Under the previous conditions guaranteeing the ML estimator converges, it is consistent
for any signal distribution if and only if, for alt € R¢, ¥(V; z) is minimized with respect

to V exactly whenr € spanV.

It will be instructive to first revisit the ML estimator in the presence of i.i.d. Gaussian
noise, i.e. the., estimator which we already showed is consistent. We will consider the
decompositiony = y; + y. of vectors into their projection onto the subspateand the
residual . Any rotation op is an isotropic Gaussian, and 8¢ andz; are independent,
andp(y) = p;(y))pL(yL). We can now analyze:

. 1
¢(Vsy) = min(=log py (y + uV’) —logp.(y1)) = —logpy(0) + —[y.|> + Const

yielding ¥(V;z) « E,, [|z1 + z1|2] + Const, which is minimized when, = 0, i.e. z
is spanned by. We thus re-derived the consistency of the estimator directly, for the
special case in which the noise is indeed Gaussian.

This consistency proof employed a key property of the isotropic Gaussian: rotations of an
isotropic Gaussian random variable remain i.i.d. As this property is unique to Gaussian
random variables, other ML estimators might not be consistent. In fact, we will shortly see
that the ML estimator for a known Laplace noise model is not consistent. To do so, we will
note that a necessary condition for consistency, if the density fungtisrtontinuous, is
that® (V;0) = E [¢(z; V)] is constant over alV. Otherwise we hav& (17;0) < ¥ (V3;0)

for someVy, Va, and for small enough € V5, ¥(V3;2) < ¥(Vs;z). A non-constant
¥(V;0) indicates an a-priori bias towards certain sub-spaces.

The negative log-likelihood of a Laplace distributigi(z;) = se~1%, is essentially the

L, norm. Consider a rank-one approximation in a two-dimensional space with Laplace
noise. Forany = (1,«), 0 < o < 1, and(z1, z2), the L; norm|z + »V”|; is minimized
whenz 4+ u = 0yielding ¢(V; z) = |22 — az|, ignoring a constant term, ankg(V; 0) =

[ [ Leml=l=l=l|2 — az|dzide = aijifl“ which is monotonic increasing in in the

valid range[0, 1]. In particular,1 = ¥((1,0);0) < ¥((1,1);0) = 2 and the estimator is
biased towards being axis-aligned.

Figure 2(c) demonstrates such an asymptotic bias empirically. Two-component Gaussian
mixture noise was added to rank-one signakih and the signal subspace was estimated
using an ML estimator with known noise model, andignestimator. For small data sets,

the ML estimator is more accurate, but as the number of samples increase, the error of the
Lo, estimator vanishes, while the ML estimator converges to the wrong subspace.



6 Discussion

In many applications few assumptions beyond independence can be made. We formu-
late the problem of dimensionality reduction as semi-parametric estimation of the low-
dimensional signal, or “factor” space, treating the signal distribution as unconstrained nui-
sance and the noise distribution as constrained nuisance. We present an estimator which is
appropriate when the conditional medhgy|u] lie in a low-dimensionalinear space, and

a maximum-likelihood estimator for additive Gaussian mixture noise.

The variance-ignoring estimator is also applicable wigeran be transformed such that
E [¢(y)|u] lie in a low-rank linear space, e.g. in log-normal models. If the conditional
distribution y|x is known, this amount to an unbiased estimatorstpr When such a
transformation is not known, we may wish to consider it as nuisance.

We draw attention to the fact the maximum-likelihood low-rank estimation cannot be taken
for granted, and demonstrate that it might not be consistent even for known noise models.
The approach employed here can also be used to investigate the consistency of ML estima-
tors with non-additive noise models. Of particular interest are distribugigixs that form
exponential families wherg; are thenatural parameters [6]. When theeanparameters

form a low-rank linear subspace, the variance-ignoring estimator is applicable, but when
the natural parameters form a linear subspace, the means are in general curved, and there is
no unbiased estimator for the natural parameters. Initial investigation reveals that, for ex-
ample, the ML estimator for a Bernoulli (logistic) conditional distribution is not consistent.
The problem of finding a consistent estimator for the linear-subspace of natural parameters
wheny;|x; forms an exponential family remains open.

We also leave open the efficiency of the various estimators, and the problem of finding
asymptotically efficient estimators, and consistent estimators exhibiting the finite-sample
gains of the ML estimator for additive Gaussian mixture noise.
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