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Abstract

We formulate linear dimensionality reduction as a semi-parametric esti-
mation problem, enabling us to study its asymptotic behavior. We gen-
eralize the problem beyond additive Gaussian noise to (unknown) non-
Gaussian additive noise, and to unbiased non-additive models.

1 Introduction

Factor models are often natural in the analysis of multi-dimensional data. The underly-
ing premise of such models is that the important aspects of the data can be captured via a
low-dimensional representation (“factor space”). The low-dimensional representation may
be useful for lossy compression as in typical applications of PCA, for signal reconstruc-
tion as in factor analysis or non-negative matrix factorization [1], for understanding the
signal structure [2], or for prediction as in applying SVD for collaborative filtering [3]. In
many situations, including collaborative filtering and structure exploration, the “important”
aspects of the data are the dependencies between different attributes. For example, in col-
laborative filtering we rely on a representation that summarizes the dependencies among
user preferences. More generally, we seek to identify a low-dimensional space that captures
thedependentaspects of the data, and separate them fromindependentvariations. Our goal
is to relax restrictions on the form of each of these components, such as Gaussianity, addi-
tivity and linearity, while maintaining a principled rigorous framework that allows analysis
of the methods.

We begin by studying the probabilistic formulations of the problem, focusing on the as-
sumptions that are made about the dependent, low-rank “signal” and independent “noise”
distributions. We consider a general semi-parametric formulation that emphasizes what is
being estimated and allows us to discuss asymptotic behavior (Section 2). We then study
the standard (PCA) approach, show that it is appropriate for additive i.i.d. noise (Section 3),
and present a generic estimator that is appropriate also for unbiased non-additive models
(Section 4). In Section 5 we confront the non-Gaussianity directly, develop maximum-
likelihood estimators in the presence of Gaussian mixture additive noise, and show that the
consistency of such maximum-likelihood estimators should not be taken for granted.



2 Dependent Dimensionality Reduction

Our starting point is the problem of identifying linear dependencies in the presence of in-
dependent identically distributed Gaussian noise. In this formulation, we observe a data
matrixY ∈ <n×d which we assume was generated asY = X + Z, where the dependent,
low-dimensional componentX ∈ <n×d (the “signal”) is a matrix of rankk and the inde-
pendent componentZ (the “noise”) is i.i.d. zero-mean Gaussian with varianceσ2. We can
write down the log-likelihood ofX as−1

σ2 |Y −X |Fro+Const (where||Fro is the Frobenius,
or sum-squared, norm) and conclude that, regardless of the varianceσ2, the maximum-
likelihood estimator ofX is the rank-kmatrix minimizing the Frobenius distance. It is
given by the leading components of the singular value decomposition ofY .1

Although the above formulation is perfectly valid, there is something displeasing about
it. We view the entire matrixX as parameters, and estimate them according to a single
observationY . The number of parameters is linear in the data, and even with more data,
we cannot hope to estimate the parameters (entries inX ) beyond a fixed precision. What we
canestimate with more data rows is the rank-krow-space ofX . Consider the factorization

y 1 y 2 y d

u

. . .

X = UV ′, whereV ′ ∈ <k×d spans this “signal space”.
The dependencies of each rowy of Y are captured by a row
u of U , which, through the parametersV andσ specifies
how each entryyi is generatedindependentlygivenu.2

A standard parametric analysis of the model would viewu as a random vector (rather
than parameters) and impose some, possibly parametric, distribution over it (interestingly,
if u is Gaussian, the maximum-likelihood reconstruction is the same Frobenius low-rank
approximation [4]). However, in the analysis we started with, we did not make any as-
sumptions about the distribution ofu, beyond its dimensionality. The model class is then
non-parametric, yet we still desire, and are able, to estimate a parametric aspect of the
model: The estimator can be seen as a ML estimator for the signal subspace, where the
distribution overu is unconstrained nuisance.

Although we did not impose any form on the distributionu, we did impose a strict form
on the conditional distributionsyi|u: we required them to be Gaussian with fixed variance
σ2 and meanuV ′

i . We would like to relax these requirements, and require only thaty|u be
a product distribution, i.e. that its coordinatesyi|u be (conditionally) independent. Since
u is continuous, we cannot expect to forego all restrictions onyi|ui, but we can expect to
set up a semi-parametric problem in whichy|u may lie in an infinite dimensional family
of distributions, and is not strictly parameterized.

Relaxing the Gaussianity leads to linear additive modelsy = uV ′ + z, with z independent
of u, but not necessarily Gaussian. Further relaxing the additivity is appropriate, e.g., when
the noise has a multiplicative component, or when the features ofy are not real numbers.
These types of models, with aknowndistributionyi|xi, have been suggested for classifi-
cation using logistic loss [5], whenyi|xi forms an exponential family [6], and in a more
abstract framework [7]. Relaxing the linearity assumptionx = uV ′ is also appropriate in
many situations. Fitting a non-linear manifold by minimizing the sum-squared distance can
be seen as a ML estimator fory|u = g(u)+ z, wherez is i.i.d. Gaussian andg : <k → <d

specifies some smooth manifold. Combining these ideas leads us to discuss the conditional
distributionsyi|gi(u), or yi|u directly.

In this paper we take our first steps is studying this problem, and relaxing restrictions on

1A mean term is also usually allowed. Incorporating a non-zero mean is straight forward, and in
order to simplify derivations, we do not account for it in most of our presentation.

2We use uppercase letters to denote matrices, and lowercase letters for vectors, and use bold type
to indicate random quantities.



y|u. We continue to assume a linear modelx = uV ′ and limit ourselves to additive noise
models and unbiased models in whichE [y|x] = x. We study the estimation of the rank-k
signal space in whichx resides, based on a sample ofn independent observations ofy
(forming the rows ofY), where the distribution onu is unconstrained nuisance.

In order to study estimators for a subspace, we must be able to compare two subspaces. A
natural way of doing so is through thecanonical anglesbetween them [8]. Define the angle
between a vectorv1 and a subspaceV2 to be the minimal angle betweenv1 and anyv2 ∈ V2.
The largest canonical angle between two subspaces is then the maximal angle between a
vector inv1 ∈ V1 and the subspaceV2. The second largest angle is the maximum over all
vectors orthogonal to thev1, and so on. It is convenient to think of a subspace in terms
of the matrix whose columns span it. Computationally, if the columns ofV1 andV2 form
orthonormal bases ofV1 andV2, then the cosines of the canonical angles betweenV1 and
V2 are given by the singular values ofV ′

1V2. Throughout the presentation, we will slightly
overload notation and use a matrix to denote also its column subspace. In particular, we
will denote byV0 the true signal subspace, i.e. such thatx = uV0

′.

3 TheL2 Estimator

We first consider the “standard” approach to low-rank approximation—minimizing the sum
squared error.3 This is the ML estimator when the noise is i.i.d. Gaussian. But theL2

estimator is appropriate also in a more general setting. We will show that theL2 estimator
is consistent for any i.i.d. additive noise with finite variance (as we will see later on, this is
more than can be said for some ML estimators).

TheL2 estimator of the signal subspace is the subspace spanned by the leading eigenvectors
of the empirical covariance matrix̂Λn of y, which is a consistent estimator of the true
covariance matrixΛY , which in turn is the sum of the covariance matrices ofx andz,
whereΛX is of rank exactly4 k, and ifz is i.i.d.,ΛZ = σ2I.

Let s1 ≥ s2 ≥ · · · ≥ sk > 0 be the non-zero eigenvalues ofΛx. Sincez has variance ex-
actlyσ2 in any direction, the principal directions of variation are not affected by it, and the
eigenvalues ofΛY are exactlys1 + σ2, . . . , sk + σ2, σ2, . . . , σ2, with the leadingk eigen-
vectors being the eigenvectors ofΛX . This ensures an eigenvalue gap ofsk > 0 between
the invariant subspace ofΛY spanned by the eigenvectors ofΛX and its complement, and
we can bound the norm of the canonical sines betweenV0 and the leadingk eigenvectors of

Λ̂n by |Λ̂n−ΛY |
sk

[8]. Since|Λ̂n−ΛY | → 0 a.s., we conclude that the estimator is consistent.

4 The Variance-Ignoring Estimator

We turn to additive noise with independent, but not identically distributed, coordinates. If
the noise variances are known, the ML estimator corresponds to minimizing the column-
weighted (inversely proportional to the variances) Frobenius norm ofY − X , and can be
calculated from the leading eigenvectors of a scaled empirical covariance matrix [9]. If the
variances are not known, e.g. when the scale of different coordinates is not known, there is
no ML estimator: at leastk coordinates of eachy can always be exactly matched, and so
the likelihood is unbounded when up tok variances approach zero.

3We call this anL2 estimator not because it minimizes the matrixL2-norm |Y − X |2, which it
does, but because it minimizes the vectorL2-norms|y − x |22.

4We should also be careful about signals that occupy only a proper subspace ofV0, and be satisfied
with any rank-ksubspace containing the support ofx, but for simplicity of presentation we assume
this does not happen andx is of full rankk.
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Figure 1: Norm of sines of canonical angles to correct subspace: (a) Random rank-2 subspaces
in <10. Gaussian noise of different scales in different coordinates— between 0.17 and 1.7 signal
strength. (b) Random rank-2 subspaces in<10, 500 sample rows, and Gaussian noise with varying
distortion (mean over 200 simulations, bars are one standard deviations tall) (c) Observations are
exponentially distributed with means in rank-2 subspace( 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 )
′.

TheL2 estimator is not satisfactory in this scenario. The covariance matrixΛZ is still diag-
onal, but is no longer a scaled identity. The additional variance introduced by the noise is
different in different directions, and these differences may overwhelm the “signal” variance
alongV0, biasing the leading eigenvectors ofΛY , and thus the limit of theL2 estimator,
toward axes with high “noise” variance. The fact that this variability is independent of the
variability in other coordinates is ignored, and theL2 estimator is asymptotically biased.

Instead of recovering the directions of greatest variability, we recover the covariance struc-
ture directly. In the limit,̂Λn → ΛY = ΛX + ΛZ , a sum of a rank-kmatrix and a diagonal
matrix. In particular, the non-diagonal entries ofΛ̂n approach those ofΛX . We can thus
seek a rank-kmatrix Λ̂X approximatinĝΛn, e.g. in a sum-squared sense, except on the di-
agonal. This is a (zero-one)weightedlow-rank approximation problem. We optimizêΛX

by iteratively seeking a rank-kapproximation ofΛ̂n with diagonal entries filled in from
the last iterate of̂ΛX (this can be viewed as an EM procedure [5]). The row-space of the
resultingΛ̂X is then an estimator for the signal subspace. Note that theL2 estimator is the
row-space of the rank-kmatrix minimizing theunweightedsum-squared distance tôΛn.

Figures 1(a,b) demonstrate this variance-ignoring estimator on simulated data with non-
identical Gaussian noise. The estimator reconstructs the signal-space almost as well as the
ML estimator, even though it does not have access to the true noise variance.

Discussing consistency in the presence of non-identical noise with unknown variances is
problematic, since the signal subspace is not necessarily identifiable. For example, the
combined covariance matrixΛY = ( 2 1

1 2 ) can arise from a rank-one signal covariance
ΛX =

(
a 1
1 1/a

)
for any 1

2 ≤ a ≤ 2, each corresponding to a different signal subspace.
Counting the number of parameters and constraints suggests identifiability whenk < d −√

8d+1−1
2 , but this is by no means a precise guarantee. Anderson and Rubin [10] present

several conditions onΛX which are sufficient for identifiability but requirek <
⌊

d
2

⌋
, and

other weaker conditions which are necessary.

Non-Additive Noise The above estimation method is also useful in a less straight-
forward situation. Until now we have considered only additive noise, in which the dis-
tribution of yi − xi was independent ofxi. We will now relax this restriction and allow
more general conditional distributionsyi|xi, requiring only thatE [yi|xi] = xi. With this
requirement, together with the structural constraint (yi independent givenx), for anyi 6= j:

Cov[yi,yj ] = E [yiyj ]− E [yi]E [yj ] = E [E [yiyj |x]]− E [E [yi|x]]E [E [yj |x]]
= E [E [yi|x]E [yj |x]]− E [xi]E [xj ] = E [xixj ]− E [xi]E [xj ] = Cov[xi,xj ].



As in the non-identical additive noise case,ΛY agrees withΛX except on the diagonal.
Even if yi|xi is identically conditionally distributed for alli, the differenceΛY − ΛX is

not in general a scaled identity: Var[yi] = E
[
E

[
y2

i |xi

]
− E [yi|xi]

2
]

+ E
[
E [yi|xi]

2
]
−

E [yi]
2 = E [Var [yi|xi]] + Var [xi]. Unlike the additive noise case, the variance ofyi|xi

depends onxi, and so its expectation depends on the distribution ofxi.

These observations suggest using the variance-ignoring estimator. Figure 1(c) demonstrates
how such an estimator succeeds in reconstruction whenyi|xi is exponentially distributed
with meanxi, even though the standardL2 estimator is not applicable. We cannot guaran-
tee consistency because the decomposition of the covariance matrix might not be unique,
but whenk <

⌊
d
2

⌋
this is not likely to happen. Note that if the conditional distribution

y|x is known, even if the decomposition is not unique, the correct signal covariance might
be identifiable based on the relationship between the signal marginals and the expected
conditional variance of ofy|x, but this is not captured by the variance-ignoring estimator.

5 Low Rank Approximation with a Gaussian Mixture Noise Model

We return to additive noise, but seeking better estimation with limited data, we confront
non-Gaussian noise distributions directly: we would like to find the maximum-likelihood
X whenY = X + Z, andZij are distributed according to a Gaussian mixture:pZ(zij) =∑m

c=1 pc(2πσ2
c )1/2 exp((zij − µc)2/(2σ2

c )).

To do so, we introduce latent variablesCij specifying the mixture component of the noise
atYij , and solve the problem using EM. In theExpectation step, we compute the posterior
probabilitiesPr (Cij |Yij ;X ) based on the current low-rank parameter matrixX . In the
Maximization step we need to find the low-rank matrixX that maximizes the posterior
expected log-likelihood:

EC|Y [log Pr (Y = X + Z|C;X )] = −
∑
ij

∑
c

Pr(Cij=c)|Yij

2σ2
c

(Xij−(Yij+µc))
2 + Const

= − 1
2

∑
ij

Wij (Xij −Aij)
2 + Const (1)

where Wij =
∑

c

Pr(Cij=c)|Yij

σ2
c

Aij = Yij +
∑

c

Pr(Cij=c)|Yijµc

σ2
cWij

This is aweightedFrobenius low-rank approximation (WLRA) problem. Equipped with a
WLRA optimization method [5], we can now perform EM iteration in order to find the ma-
trix X maximizing the likelihood of the observed matrixY . At eachM step it is enough to
perform a single WLRA optimization iteration, which is guaranteed to improve the WLRA
objective, and so also the likelihood. The method can be augmented to handle anunknown
Gaussian mixture, by introducing an optimization of the mixture parameters at eachM
iteration.

Experiments with GSMs We report here initial experiments with ML estimation using
bounded Gaussian scale mixtures [11], i.e. a mixture of Gaussians with zero mean, and
variance bounded from bellow. Gaussian scale mixtures (GSMs) are a rich class of sym-
metric distributions, which include non-log-concave, and heavy tailed distributions. We
investigated two noise distributions: a ’Gaussian with outliers’ distribution formed as a
mixture of two zero-mean Gaussians with widely varying variances; and a Laplace dis-
tribution p(z) ∝ e−|z|, which is an infinite scale mixture of Gaussians. Figures 2(a,b)
show the quality of reconstruction of theL2 estimator and the ML bounded GSM estima-
tor, for these two noise distributions, for a fixed sample size of 300 rows, under varying
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Figure 2: Norm of sines of canonical angles to correct subspace: (a) Random rank-3 subspace in
<10 with Laplace noise. Insert: sine norm of ML est. plotted against sine norm ofL2 est. (b)
Random rank-2 subspace in<10 with 0.99N (0, 1) + 0.01N (0, 100) noise. (c) span(2,1, 1)′ ⊂ <3

with 0.9N (0, 1) + 0.1N (0, 25) noise. The ML estimator converges to(2.34, 1, 1). Bars are one
standard deviation tall.

signal strengths. We allowed ten Gaussian components, and did not observe any significant
change in the estimator when the number of components increases.

The ML estimator is overall more accurate than theL2 estimator—it succeeds in reliably
reconstructing the low-rank signal for signals which are approximately three times weaker
than those necessary for reliable reconstruction using theL2 estimator. The improvement
in performance is not as dramatic, but still noticeable, for Laplace noise.

Comparison with Newton’s Methods Confronted with a general additive noise distri-
bution, the approach presented here would be to rewrite, or approximate, it as a Gaussian
mixture and use WLRA in order to learnX using EM. A different approach is to consider-
ing the second order Taylor expansions of the log-likelihood, with respect to the entries of
X , and iteratively maximize them using WLRA [5, 7]. Such an approach requires calculat-
ing the first and second derivatives of the density. If the density is not specified analytically,
or is unknown, these quantities need to be estimated. But beyond these issues, which can be
overcome, lies the major problem of Newton’s method: the noise density must be strictly
log-concave and differentiable. If the distribution is not log-concave, the quadratic expan-
sion of the log-likelihood will be unbounded and will not admit an optimum. Attempting
to ignore this fact, and for example “optimizing”U givenV using the equations derived
for non-negative weights would actually drive us towards a saddle-point rather then a local
optimum. The non-concavity does not only mean that we are not guaranteed a global opti-
mum (which we are not guaranteed in any case, due to the non-convexity of the low-rank
requirement)— it does not yield even local improvements. On the other hand, approximat-
ing the distribution as a Gaussians mixture and using the EM method, might still get stuck
in local minima, but is at least guaranteed local improvement.

Limiting ourselves to only log-concave distributions is a rather strong limitation, as it
precludes, for example, all heavy-tailed distributions. Consider even the “balanced tail”
Laplace distributionp(z) ∝ e−|z|. Since the log-density is piecewise linear, a quadratic
approximation of it is a line, which of course does not attain a minimum value.

Consistency Despite the gains in reconstruction presented above, the ML estimator may
suffer from an asymptotic bias, making it inferior to theL2 estimator on large samples. We
study the asymptotic limit of the ML estimator, for a known product distributionp. We first
establish a necessary and sufficient condition for consistency of the estimator.

The ML estimator is the minimizer of the empirical mean of the random functionΦ(V ) =
minu(− log p(y−uV ′)). When the number of samples increase, the empirical means con-
verge to the true means, and ifE [Φ(V1)] < E [Φ(V2)], then with probability approaching



oneV2 will not minimize Ê [Φ(V )]. For the ML estimator to be consistent,E [Φ(V )] must
be minimized byV0, establishing a necessary condition for consistency.

The sufficiency of this condition rests on theuniform convergence of{Ê [Φ(V )]}, which
does not generally exist, or at least on uniformdivergencefrom E [Φ(V0)]. It should be
noted that the issue here is whether the ML estimator at all converges, since if it does con-
verge, it must converge to the minimizer ofE [Φ(V )]. Such convergence can be demon-
strated at least in the special case when the marginal noise densityp(zi) is continuous,
strictly positive, and has finite variance and differential entropy. Under these conditions,
the ML estimator is consistent if and only ifV0 is the unique minimizer ofE [Φ(V )].

When discussingE [Φ(V )], the expectation is with respect to the noise distributionand
the signal distribution. This is not quite satisfactory, as we would like results which are
independent of the signal distribution, beyond the rank of its support. To do so, we must
ensure the expectation ofΦ(V ) is minimized onV0 for all possible signals (and not only in
expectation). Denote the objectiveφ(y ;V ) = minu(− log p(y − uV ′)). For anyx ∈ <d,
considerΨ(V ; x ) = Ez [φ(x + z; V )], where the expectation is only over the additive noise
z. Under the previous conditions guaranteeing the ML estimator converges, it is consistent
for any signal distribution if and only if, for allx ∈ <d, Ψ(V ; x ) is minimized with respect
to V exactly whenx ∈ spanV.

It will be instructive to first revisit the ML estimator in the presence of i.i.d. Gaussian
noise, i.e. theL2 estimator which we already showed is consistent. We will consider the
decompositiony = y‖ + y⊥ of vectors into their projection onto the subspaceV , and the
residual . Any rotation ofp is an isotropic Gaussian, and soz⊥ andz‖ are independent,
andp(y) = p‖(y‖)p⊥(y⊥). We can now analyze:

φ(V ; y) = min
u

(− log p‖(y‖ + uV ′)− log p⊥(y⊥)) = − log p‖(0) +
1
σ2
|y⊥|2 + Const

yielding Ψ(V ; x ) ∝ Ez⊥ [|x⊥ + z⊥|2] + Const, which is minimized whenx⊥ = 0, i.e. x
is spanned byV . We thus re-derived the consistency of theL2 estimator directly, for the
special case in which the noise is indeed Gaussian.

This consistency proof employed a key property of the isotropic Gaussian: rotations of an
isotropic Gaussian random variable remain i.i.d. As this property is unique to Gaussian
random variables, other ML estimators might not be consistent. In fact, we will shortly see
that the ML estimator for a known Laplace noise model is not consistent. To do so, we will
note that a necessary condition for consistency, if the density functionp is continuous, is
thatΨ(V ; 0) = E [φ(z;V )] is constant over allV . Otherwise we haveΨ(V1; 0) < Ψ(V2; 0)
for someV1, V2, and for small enoughx ∈ V2, Ψ(V1; x ) < Ψ(V2; x ). A non-constant
Ψ(V ; 0) indicates an a-priori bias towards certain sub-spaces.

The negative log-likelihood of a Laplace distribution,p(zi) = 1
2e−|zi|, is essentially the

L1 norm. Consider a rank-one approximation in a two-dimensional space with Laplace
noise. For anyV = (1, α), 0 ≤ α ≤ 1, and(z1, z2), theL1 norm |z + uV ′|1 is minimized
whenz1 + u = 0 yieldingφ(V ; z ) = |z2 − αz1|, ignoring a constant term, andΨ(V ; 0) =∫ ∫

1
4e−|z1|−|z2||z2 − αz1|dz1dz2 = α2+α+1

α+1 , which is monotonic increasing inα in the
valid range[0, 1]. In particular,1 = Ψ((1, 0); 0) < Ψ((1, 1); 0) = 3

2 and the estimator is
biased towards being axis-aligned.

Figure 2(c) demonstrates such an asymptotic bias empirically. Two-component Gaussian
mixture noise was added to rank-one signal in<3, and the signal subspace was estimated
using an ML estimator with known noise model, and anL2 estimator. For small data sets,
the ML estimator is more accurate, but as the number of samples increase, the error of the
L2 estimator vanishes, while the ML estimator converges to the wrong subspace.



6 Discussion

In many applications few assumptions beyond independence can be made. We formu-
late the problem of dimensionality reduction as semi-parametric estimation of the low-
dimensional signal, or “factor” space, treating the signal distribution as unconstrained nui-
sance and the noise distribution as constrained nuisance. We present an estimator which is
appropriate when the conditional meansE [y|u] lie in a low-dimensionallinear space, and
a maximum-likelihood estimator for additive Gaussian mixture noise.

The variance-ignoring estimator is also applicable wheny can be transformed such that
E [g(y)|u] lie in a low-rank linear space, e.g. in log-normal models. If the conditional
distribution y|x is known, this amount to an unbiased estimator forxi. When such a
transformation is not known, we may wish to consider it as nuisance.

We draw attention to the fact the maximum-likelihood low-rank estimation cannot be taken
for granted, and demonstrate that it might not be consistent even for known noise models.
The approach employed here can also be used to investigate the consistency of ML estima-
tors with non-additive noise models. Of particular interest are distributionsyi|xi that form
exponential families wherexi are thenatural parameters [6]. When themeanparameters
form a low-rank linear subspace, the variance-ignoring estimator is applicable, but when
the natural parameters form a linear subspace, the means are in general curved, and there is
no unbiased estimator for the natural parameters. Initial investigation reveals that, for ex-
ample, the ML estimator for a Bernoulli (logistic) conditional distribution is not consistent.
The problem of finding a consistent estimator for the linear-subspace of natural parameters
whenyi|xi forms an exponential family remains open.

We also leave open the efficiency of the various estimators, and the problem of finding
asymptotically efficient estimators, and consistent estimators exhibiting the finite-sample
gains of the ML estimator for additive Gaussian mixture noise.
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