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Abstract

New feature selection algorithms for linear threshold functions are de-
scribed which combine backward elimination with an adaptive regular-
ization method. This makes them particularly suitable to the classifica-
tion of microarray expression data, where the goal is to obtain accurate
rules depending on few genes only. Our algorithms are fast and easy to
implement, since they center on an incremental (large margin) algorithm
which allows us to avoid linear, quadratic or higher-order programming
methods. We report on preliminary experiments with five known DNA
microarray datasets. These experiments suggest that multiplicative large
margin algorithms tend to outperform additive algorithms (such as SVM)
on feature selection tasks.

1 Introduction

Microarray technology allows researchers to simultaneously measure expression levels as-
sociated with thousands or ten thousands of genes in a single experiment (e.g., [7]). How-
ever, the number of replicates in these experiments is often seriously limited (tipically a
few dozen). This gives rise to datasets having a large number of gene expression values
(numerical components) and a relatively small number of samples. As a popular example,
in the “Leukemia” dataset from [10] we have only 72 observations of the expression level
of 7129 genes. It is clear that in this extreme scenario machine learning methods related to
feature selection play a fundamental role for increasing efficiency and enhancing the com-
prehensibility of the results. Besides, in biological and medical research finding accurate
class prediction rules which depend on the level of expression of few genes is important for
a number of activities, ranging from medical diagnostics to drug discovery.

Within the classification framework, a regularization method (also called penalty-based
or feature weighting method) is an indirect route to feature selection. Whereas a (direct)
feature selection method searches in the combinatorial space of feature subsets, a regu-
larization method constrains the magnitudes of the parameters assigning them a “degree
of relevance” during learning, thereby performing feature selection as a by-product of its
learning mechanism (see, e.g., [16, 19, 17, 14, 4, 20]). Feature selection is a wide and
active field of research; the reader is referred to [15] for a valuable survey. See also, e.g.,
[3, 6] (and references therein) for specific work on gene expression data.

In this paper, we introduce novel feature selection algorithms for linear threshold functions,



whose core learning procedure is an incremental large margin algorithm called® ALMA,,
(Approximate Large Margin Algorithm w.r.t. norm p) [8]. Our ALMA ,-based feature selec-
tion algorithms lie between a direct feature selection method and a regularization method.
These algorithms might be considered as a refinement on a recently proposed method,
specifically tested on microarray expression data, called Recursive Feature Elimination
(RFE) [13]. RFE uses Support Vector Machines (SVM) as the core learning algorithm,
and performs backward selection to greedily remove the feature whose associated weight
is smallest in absolute value until only the desired number of features remain. Our algo-
rithms operate in a similar fashion, but they allow us to eliminate many features at once by
exploiting margin information about the current training set. The degree of dimensionality
reduction is ruled by the norm p in ALMA,,. The algorithms start by being aggressive (sim-
ulating a multiplicative algorithm when the number of current features is large) and end by
being gentle (simulating an additive algorithm such as SVM when few features are left).
From a computational standpoint, our algorithms lie somewhere between a 1-norm and a
2-norm penalization method. However, unlike other regularization approaches specifically
tailored to feature selection, such as those in [4, 20], we do avoid computationally inten-
sive linear (or nonlinear) programming methods. This is because we not only solve the
optimization problem associated to regularization in an approximate way, but also use an
incremental algorithm having the additional capability to smoothly interpolate between the
two kinds of penalizations.

Our algorithms are simple to implement and turn out to be quite fast. We made preliminary
experiments on five known DNA microarray datasets. In these experiments, we compared
the margin-based feature selection performed by our multiplicative algorithms to a stan-
dard correlation-based feature selection method applied to both additive (SVM-like) and
multiplicative (Winnow-like) core learning procedures. When possible, we tried to follow
previous experimental settings, such as those in [13, 22, 20]. The conclusion of our prelimi-
nary study is that a multiplicative (large margin) algorithm is often better that an SVM-like
algorithm when the goal is to compute linear threshold rules that are both accurate and
depend on the value of few components (as is often the case in gene expression datasets).

2 Preliminariesand notation

An example is a pair (z,y), where z is an instance vector lying in R/ and y € {1, +1}
is the binary label associated with . A training set S is a sequence of examples S =
(21,91); o, (T Ym)) € (RF x {=1,+1})™. When F C {1, ..., f} is a set of features
and v € R/, we denote by v the subvector of v where the features/dimensions not in F'
are eliminated. Also, S| denotes the training set S\p = (%17, Y1), -+, (T 7> Ym))- A
weight vector w = (w1, ..., w;) € R/ represents a hyperplane passing through the origin.
As usual, we associate with w the (zero threshold) linear threshold function w : * —
sign(w - &) = 1 ifw -« > 0 and = —1 otherwise. When p > 1 we denote by ||w||,
the p-norm of w, i.e., |Jwl], = (337 ws[?)/7 (also, [[w]|ee = Tlimy oo (337 |w;[?)2/P
= max; |w;|). We say that norm ¢ is dual to norm p if ¢ = ﬁ. In this paper we assume
that p and ¢ are some pair of dual values, with p > 2. We use p-norms for instance
vectors and g-norms for weight vectors. For notational brevity, throughout this paper we
use normalized instances & = x/||x||,,, where p will be clear from the surrounding context.
The (normalized) p-norm margin (or just the margin) of a hyperplane w with ||w||, < 1
on example (x,y) is defined as y w - &. If this margin is positive then w classifies (x, y)
correctly. Notice that ||z||, < f!/P ||z||~ for any & € RS. Hence if p is logarithmic in
the number of features/dimensions of z, i.e., p = In f, we obtain ||z|[1, ;) < €||2||c.

Broadly speaking, as the norm parameter p is varied, ALMA,, is able to (approximately) interpo-
late between Support Vector Machines [5] and (large margin versions of) multiplicative classification
algorithms, such as Winnow [16]. Compared to Winnow, ALMA,, is more flexible (since we can
adjust the norm parameter p) and requires less tuning. See Section 3 for details.



ALGORITHM ALMA,(S, o)

Input: Training set S = ((x1,41), ..., (@m, ym)); NOrm parameter p > 2; ap-
proximation parameter o € (0, 1].

Initialization: w; = 0; k = 1.

Fort=1,2,...do:

Get example (x:, y;) and update weights as follows:

8(p—1
Set: y = VU Lo gy = [2 L

If yewy -2 < (1— )y

then: w), = TN (T(wg) + nk ye &),
wy1 = wh/|[wh|,, where g = -2,
k—k+1.

Output: Final weight vector wy, = (wg 1, ..., wy, 7); final margin v = ~,.

Figure 1: The approximate large margin algorithm ALMA,.

Also, ||w||; < 1 implies ||w]||, < 1 forany ¢ > 1. Thus if ||w||; < 1 the (In f)-norm

margin % is actually bounded from below by the co-norm margin % divided by

some constant. Arguing about the co-norm margin is convenient when dealing with sparse
hyperplanes, i.e., with hyperplanes having only a small number of relevant features (e.g.,
[14]). We say that a training set S = ((x1,41), ---, (®m, ym)) is linearly separable with
margin v > 0 when there exists a hyperplane w with ||w||, < 1 such that y, w - &; > v
fort =1,...,m. Given « € (0, 1], we say that hyperplane w’ is an «-approximation to w
(w.r.t. training set S) if [|w'||; < land y,w’ - &, > (1 — )y holds for¢t = 1,...,m. In
particular, if the underlying margin is an co-norm margin (and « is not close to 1) then w’
tends to share the sparsity properties of w. See also Section 3.

3 Thelargemargin algorithm ALMA,,

ALMA,, is a large margin variant of the p-norm Perceptron algorithm? introduced by [11]
(see also [9]). The version of the algorithm we have used in our experiments is described in
Figure 1, where the one-one mapping T = (71, ...,T¢) : R/ — R/ is the gradient of the
scalar function %[ - [|2 and its inverse T—! = (T ,...,T; ') : R/ — R/ is the gradient
of the (Legendre dual) function 3| - ||2. The mapping T depends on the chosen norm p,
which we omit for notational brevity. One can immediately see that p = ¢ = 2 gives T =
T~ = identity. See [9] for further discussion about the properties of T. The algorithm in
Figure 1 takes in input a training set S = ((x1,41), -, (X, Ym)) € (RF x {=1,+1})™,
a norm value p > 2 and a parameter « € (0, 1], measuring the degree of approximation
to the optimal margin hyperplane. Learning proceeds in a sequence of trials. ALMA,
maintains a normalized vector wy, of f weights. It starts from w; = 0 and in the generic
trial ¢ it processes example (x;, ;). If the current weight vector wy, classifies (x;, y;) with
(normalized) margin not larger than (1 — «) -y, then the algorithm updates its internal state.
The update rule consists of the following: First, the algorithm computes w/, via a (p-norm)
perceptron-like update rule. Second, wj, is normalized w.r.t. the chosen norm ¢ (recall
that ¢ is dual to p). The normalized vector w1 will then be used in the next trial. After
sweeping (typically more than once) through the training set, the algorithm outputs an f-
dimensional vector wy, which represents the linear model the algorithm has learned from
the data. The output also includes the final margin v = ~, where k is the total number of
updates (plus one) the algorithm took to compute w;. This margin is a valuable indication
of the level of “noise” in the data. In particular, when the training set S is linearly separable,

2The p-norm Perceptron algorithm is a generalization of the classical Perceptron algorithm, ob-
tained by setting p = 2.



we can use ~y to estimate from above the true margin v* of S (see Theorem 1). In turn, v*
helps us in setting up a reliable feature selection process (see Section 4). Theorem 1 is a
convergence result stating two things [8]: 1. ALMA (S, «) computes an a-approximation
to the maximal p-norm margin hyperplane after a finite number of updates; 2. the margin
~ output by ALMA (S, «) is an upper bound on the true margin of S.3

Theorem 1 [8] Let ~* = MaXqpeR s : [|w||,=1 Wilt=1,...,m Yt W - x; > 0. Then the
number of updates made by the algorithm in Figure 1 (i.e., the number of trials ¢ such that
ye wy - & < (1 — ) ) is upper bounded by 2((71’:)? (2-1)’+8-4=0 (%) .
Furthermore, throughout the run of the algorithm we have v, > v > v*, fork = 1,2, ...
(recall that ~ is the last v, produced by ALMA,). Hence the previous bound is also an
upper bound on the number of trials ¢ such that y, wy, - &; < (1 — ) 7.

Recalling Section 2, we notice that setting p = O(In f) makes ALMA,, useful when
learning sparse hyperplanes. In particular, the above theorem gives us the following
co-norm margin upper bound on the number of updates: O (In f / (a? (v*)?)), where
Y = MaXepeRrs : |jw||—1 Mit=1__m Ys W - T /|l®¢||0o. This is similar to the behav-
ior exhibited by classhliers based on linear programming (e.g., [17, 19, 4] and references
therein), as well as to the performance achieved by multiplicative algorithms, such as the

zero-threshold Winnow algorithm [11].

4 Themultiplicative feature selection algorithms

We now describe two feature selection algorithms based on ALMA,,. The algorithms differ
in the way features are eliminated. The first algorithm, called ALMA-FS (ALMA-based
Feature Selection), is strongly influenced by its training behavior: If ALMA, has made
many updates during training then arguably this corresponds to a high level of noise in
the data (w.r.t. a linear model). In this case the feature selection mechanism tends to be
prudent in eliminating features. On the other hand, if the number of updates is small we
can think of the linear model computed by ALMA, as an accurate one for the training
data at hand, so that one can reliably perform a more aggressive feature removal. The
second algorithm, called ALMA,,-RFE, performs Recursive Feature Elimination (RFE) on
the linear model computed by ALMA,,, and might be seen as a simplified version of the
first one, where the rate of feature removal is constant and the final number of features
is fixed ahead of time. ALMA-FS is described in Figure 2. It takes in input a training
set S = ((x1,91)s - (T, ym)) € (R™ x {—1,+1})™ and a parameter « (which is the
same as ALMA,’s). Then the algorithm repeatedly invokes ALMA,, on the same training
set but progressively reducing the set F' of current features. The algorithm starts with
F = {1,...,n}, being n the dimension of the input space. Then, on each repeat-until
iteration, the algorithm: sets the norm p to the logarithm# of the number f of current
features, runs ALMA,, for the given values of « and p, gets in output w and ~, and computes
the new (smaller) F' to be used in the next iteration. Computing the new F' amounts to
sorting the components of w according to decreasing absolute value and then keeping,
among the f features, only the largest ones (thereby eliminating features which are likely to
be irrelevant). Here c(«) € [0, 1] is a suitable function whose value will be specified later.
We call a repeat-until iteration of this kind a feature selection stage. ALMA-FS terminates
when it reaches a local minimum F', where the algorithm is unable to drop any further
features.

ALMA-FSs uses the output produced by ALMA,, in the most natural way, retaining only the
features corresponding to (supposedly) relevant components of w. We point out that here
the discrimination between relevant and irrelevant components is based on the margin ~

3A more general statement holds for the nonseparable case (see [8] for details). In this case, the
o parameter in ALMA,(.,«) is similar to the C' parameter in SVM [5].
“In order to prevent p < 2, we actually set p = 2 whenIn f < 2.



ALGORITHM ALMA-FS(S, o)
Input: Training set S = ((z1,y1), -+, (Tm, Ym)); approx. param. a € (0, 1].
Initialization: F = {1,2,...,n}; f := |F| = n.
Repeat
e Setp := max{2,In f} and run ALMA (S|, a), getting in output w =
(w1, ...,wy) € R and v > 0;
e Sort wy, ..., wy according to decreasing |w;| and let w;, , ..., w;, be the
sorted sequence; set ¢ = I% and compute the smallest f* < f s.t.

S g |7 > 1= (e(a) )% L)
e Set F' = {il,ig,...ﬂ;f*}; f = |F| = f*,

Until F" does not shrink any more.
Output: Final weight vector w = (w1, ..., wy).

Figure 2: ALMA-Fs: Feature selection using ALMA,, where p is logarithmic in f.

output by ALMA,,. In turn, v depends on the number of training updates made by ALMA,,,
i.e., on the “amount of noise” in the data. This criterion can be viewed as a margin-based
criterion according to the following fact: If in any given stage ALMA,, has computed an
«-approximation to the maximal margin hyperplane for a (linearly separable) training se-
quence S, then the (smaller) vector computed at the end of that stage will be an (a+ ¢(a))-
approximation to the maximal margin hyperplane for the new (linearly separable) sequence
where some features have been eliminated. This statement follows directly from (1) and
Theorem 1. We omit the details due to space limitations. From this point of view, a reason-
able choice of ¢(«) is one which insures o + ¢(a) < 1 for o € [0, 1] and the two limiting
conditions lim,_,o @ + ¢(a) = 0 and lim, 1 o + ¢(a) = 1. The simplest function sat-
isfying the conditions above (the one we used in the experiments) is c(a) = a (1 — «).
ALMA-Fs starts with a relatively large value of the norm parameter p (making it fairly
aggressive at the beginning), and then progressively reduces this parameter so that the al-
gorithm can focus in later stages on the remaining features. This heuristic approach allows
us to keep a good approximation capability (as measured by the margin) while dropping a
lot of irrelevant components from the weight vectors computed by ALMA .

ALMA,-RFE is a simplified version of ALMA-Fs that halves the number of features in
each stage, and uses again a norm p logarithmic in the number of current features. The
o parameter is replaced by ny, the desired number of features. ALMA,-RFE(S,ny) is
obtained from the algorithm in Figure 2 upon replacing the definition of f* in (1) by f* =
max{| f/2],ns}, so that the number of training stages is always logarithmic in n/n .

5 Experiments

We tested ALMA-FS and ALMA,-RFE on a few well-known microarray datasets (see be-
low). For the sake of comparison, we tended to follow previous experimental settings, such
as those described in [13, 22, 20]. Our results are summarized in Table 1. For each dataset,
we first generated a number of random training/test splits. Since we used on-line algo-
rithms, the output depends on the order of the training sequence. Therefore our random
splits also included random permutations of the training set. The results shown in Table 1
are averaged over these random splits.

Five datasets have been used in our experiments.

1. The ALL-AML dataset [10] contains 72 samples, each with expression profiles about
7129 genes. The task is to distinguish between the two variants of leukemia ALL and
AML. We call this dataset the “Leukemia” dataset. We used the first 38 examples as train-
ing set and the remaining 34 as test set. This seems to be a standard training/test split (e.g.,
[10, 21, 13, 22]). The results have been averaged over 1000 random permutations of the



training set.

2. The “Colon Cancer” dataset [2] contains 62 expression profiles for tumor and normal
samples concerning 2000 genes. Following [20], we randomly split the dataset into a train-
ing set of 50 examples and a test set of 12. The random split was performed 1000 times.

3. In the ER+/ER— dataset from [12] the task is to analyze expression profiles of breast
cancer and classify breast tumors according to ER (Estrogen Receptor) status. This dataset
(which we call the “Breast” dataset) contains 58 expression profiles concerning 3389 genes.
We randomly split 1000 times into a training set of size 47 and a test set of size 11.

4. The “Prostate” cancer dataset from [18] contains 102 samples with expression profiles
concerning 12600 genes. The task is to separate tumor from normal samples. As in [18],
we estimated the test error through a Leave-One Out Cross Validation (LOOCV)-like es-
timator. In particular, for this dataset we randomly split 1000 times into a training set of
101 examples and a test set of 1 example, and then averaged the results. (This is roughly
equivalent to LOOCV with 10 random permutations of the training set.)

5. In the “Lymphoma” dataset [1] the goal is to separate cancerous and normal tissues in
a large B-Cell lymphoma problem. The dataset contains 96 expression profiles concerning
4026 genes, 62 samples are in the classes “DLCL”, “FL” and “CLL" (malignant) and the
remaining 34 are labelled “otherwise”. As in [20], we randomly split the dataset into a
training set of size 60 and a test set of size 36. The random split was performed 1000 times.
We made no preprocessing on the data. All our experiments have been run on a PC with
a single AMD Athlon processor running at 1300 Mhz. The running times we will be giv-
ing are measured on this machine. We compared on these datasets ALMA-FS (“FS” in
Table 1) and ALMA,-RFE (“In-RFE”) to three more feature selection algorithms: a fast
approximation to Recursive Feature Elimination applied to SVM (called ALMA-RFE, ab-
breviated as “2-RFE” in Table 1), and a standard feature selection method based on corre-
lation coefficients (e.g., [10]) applied to both (an approximation to) SVM and ALMA1, ¢,
being f the number of features selected by the correlation method. We call the last two
methods ALMA2-CORR (“2-CORR” in Table 1) and ALMA,-CORR (“In-CORR” in Ta-
ble 1), respectively. In all cases our base learning algorithm was ALMA,(.,«t), where
a € {0.5,0.6,0.7,0.8,0.9}, and p was either 2 (to approximate SVM) or logarithmic
in the number of features the algorithm was operating on (to simulate a multiplicative large
margin algorithm). For each combination (algorithm, number of genes), only the best
accuracy results (w.r.t. «) are shown. On the “Colon cancer”, the “Breast” and the “Lym-
phoma” datasets we run ALMA,, by cycling 50 times over the current training set. On the
“Leukemia” and the “Prostate” datasets (which are larger) we cycled 100 times. In Table
1 we give, for each dataset, the average error and the number of features (“# GENES”) se-
lected by the algorithms.> The only algorithm which tries to determine the final number of
features as a part of its inference mechanism is ALMA-Fs: all the others take this number
as an explicit input parameter.

The main goal of this experimental study was to carry out a direct comparison between dif-
ferent feature selection methods combined with different core learning algorithms. Feature
selection performed by ALMA-FS, ALMA,-RFE and ALMA»-RFE is margin-based, while
feature selection performed by ALMA5-CORR and ALMA,-CORR is correlation-based.
According to [15], the former falls within the category of wrapper methods, while the lat-
ter is an example of filter methods. The two core learning algorithms we employed are the
SVM-like algorithm ALMA, and the (large margin) Winnow-like algorithm ALMA,, with
logarithmic p. The first has been used with ALMA>-RFE and ALMA,-CORR, the second
has been used with ALMA-FS, ALMA1,,-RFE and ALMA;,-CORR.

The accuracy results we have obtained are often superior to those reported in the litera-

SObserve that, due to the on-line nature of the algorithms, different sets of genes get selected on
different runs. Therefore one could also collect statistics about the gene selection frequency over the
runs. Details will be given in the full paper.



Table 1: Experimental results on five microarray datasets. The percentages denote the av-
erage fraction of misclassified patterns in the test set, while “# GENES” denotes the average
number of genes (features) selected. The results refer to the same training/test splits. Notice
that ALMA-Fs (“FS”) determines automatically the number of genes to select. According
to Wilcoxon signed rank test, > 0.5% accuracy difference might be considered significant.

# GENES FS 2-RFE | In-RFE | 2-CORR | In-CORR

LEUKEMIA 20 — 5.8% 3.3% 5.9% 3.7%
26.5 3.0% — — — —

40 — 6.7% 3.0% 5.0% 3.6%

60 — 8.9% 3.2% 4.3% 2.9%

100 — 9.0% 2.5% 4.0% 2.9%

200 — 7.2% 3.1% 3.0% 4.5%

ALL — 3.5% 3.3% 3.5% 3.3%

COLON 20 — 17.0% | 13.1% 15.4% 14.8%
CANCER 22.6 12.7% — — — —

40 — 15.4% | 12.1% 14.4% 14.0%

60 — 14.8% | 12.0% 14.2% 13.6%

100 — 14.3% | 12.6% 13.7% 13.1%

200 — 13.2% | 12.4% 13.9% 13.2%

ALL — 13.0% | 13.3% 13.0% 13.3%

BREAST 20 — 11.5% | 10.3% 6.1% 5.5%
38.5 9.5% — — — —

40 — 10.7% 9.9% 6.5% 6.5%

60 — 10.1% 9.9% 7.5% 8.5%

100 — 10.4% 9.8% 13.1% 10.4%

200 — 11.9% 9.6% 14.6% 14.5%

ALL — 15.8% | 10.0% 15.8% 10.0%

PROSTATE 20 — 8.4% 7.8% 11.5% 10.4%
30.8 9.5% — — — —

40 — 8.1% 9.4% 10.2% 8.0%

60 — 8.1% | 10.3% 8.5% 7.7%

100 — 9.3% | 10.2% 6.9% 6.5%

200 — 9.8% 9.9% 8.4% 7.2%

ALL — 10.0% | 10.4% 10.0% 10.4%

LYMPHOMA 20 — 10.1% 9.9% 12.6% 12.3%
30.8 8.1% — — — —

40 — 7.9% 7.4% 10.5% 10.2%

60 — 7.4% 6.8% 9.5% 9.2%

100 — 6.6% 6.0% 8.2% 8.3%

200 — 6.3% 5.6% 7.4% 7.7%

ALL — 7.2% 5.5% 7.2% 5.5%

ture, though this should not be considered very significant.® From our direct comparison,
however, a few (more reliable) conclusions can be drawn. First, on these gene expression

81n fact, the results on feature selection applied to microarray datasets are not readily comparable
across different papers, due to the randomness in the training/test splits (which is a relevant source
of variance) and the different preprocessing of the data. That said, we briefly mention a few results
reported by other researchers on the same datasets. On the “Leukemia” dataset, [22] report 0% test
error for a logistic regression algorithm that chooses the number of features to extract by LOOCV.
The same error rate is reported by [21] for a linear SVM using 20 genes. [20] use linear SVM as the
underlying learning algorithm. On the “Colon Cancer” dataset, the authors report an average accuracy
of 16.4% without feature selection and an accuracy ranging between 15.0% and 16.9% (depending
on the number of genes selected) for the RFE and the AROM (Approximation of the Zero-Norm
Minimization) methods. On the “Lymphoma” dataset the same authors report 7.1% average error for
linear SVM and 5.9% to 6.8% average error (again depending on the number of genes selected) for
the RFE and the AROM methods. On the “Prostate” dataset, [18] use a k-NN classifier and report a
LOOCYV accuracy comparable to ALMA2-RFE’s (but worse than ALMA,,-CORR’s).



datasets a large margin Winnow-like algorithm generally outperforms an SVM-like algo-
rithm. Second, despite the common wisdom [15] according to which wrapper methods tend
to be more accurate than filter methods, it is hard to tell here how the two methods compare
(see [22] for similar results). Third, knowing the “optimal” number of genes beforehand
is a valuable side information. Notice that, unlike many of the methods proposed in the
literature, ALMA-FS tries to determine in an automatic way a “good” number of features to
select.” In fact, due to the scarcity of examples and the large number of vector components,
the repeated use of cross-validation on the same validation set might lead to overfitting.
ALMA-FS seems to do a fine job of it on three out of five datasets (on the “Breast” dataset
“FS” should only be compared to “2-RFE” and “In-RFE”). Finally, we would like to stress
that our feature selection algorithms are quite fast. To give an idea, on the “Colon Cancer”
and the “Breast” datasets our algorithms take on average just a few seconds, while on the
“Prostate” dataset they take just a few minutes.
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