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Abstract

We examine the use of hidden Markov and hidden semi-Markov mod-
els for automatically segmenting an electrocardiogram waveform into
its constituent waveform features. An undecimated wavelet transform
is used to generate an overcomplete representation of the signal that is
more appropriate for subsequent modelling. We show that the state dura-
tions implicit in a standard hidden Markov model are ill-suited to those
of real ECG features, and we investigate the use of hidden semi-Markov
models for improved state duration modelling.

1 Introduction

The development of new drugs by the pharmaceutical industry is a costly and lengthy pro-
cess, with the time from concept to final product typically lasting ten years. Perhaps the
most critical stage of this process is the phase one study, where the drug is administered
to humans for the first time. During this stage each subject is carefully monitored for any
unexpected adverse effects which may be brought about by the drug. Of particular interest
is the electrocardiogram (ECG1) of the patient, which provides detailed information about
the state of the patient’s heart.

By examining the ECG signal in detail it is possible to derive a number of informative
measurements from the characteristic ECG waveform. These can then be used to assess the
medical well-being of the patient, and more importantly, detect any potential side effects
of the drug on the cardiac rhythm. The most important of these measurements is the “QT
interval”. In particular, drug-induced prolongation of the QT interval (so called Long QT
Syndrome) can result in a very fast, abnormal heart rhythm known as torsade de pointes,
which is often followed by sudden cardiac death 2.

In practice, QT interval measurements are carried out manually by specially trained ECG
analysts. This is an expensive and time consuming process, which is susceptible to mis-
takes by the analysts and provides no associated degree of confidence (or accuracy) in the
measurements. This problem was recently highlighted in the case of the antihistamine

1The ECG is also referred to as the EKG.
2This is known as Sudden Arrhythmia Death Syndrome, or SADS.
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Figure 1: A human ECG waveform.

terfenadine, which had the side-effect of significantly prolonging the QT interval in a num-
ber of patients. Unfortunately this side-effect was not detected in the clinical trials and
only came to light after a large number of people had unexpectedly died whilst taking the
drug [8].

In this paper we consider the problem of automated ECG interval analysis from a machine
learning perspective. In particular, we examine the use of hidden Markov models for auto-
matically segmenting an ECG signal into its constituent waveform features. A redundant
wavelet transform is used to provide an informative representation which is both robust to
noise and tuned to the morphological characteristics of the waveform features. Finally we
investigate the use of hidden semi-Markov models for explicit state duration modelling.

2 The Electrocardiogram

2.1 The ECG Waveform

Each individual heartbeat is comprised of a number of distinct cardiological stages, which
in turn give rise to a set of distinct features in the ECG waveform. These features represent
either depolarization (electrical discharging) or repolarization (electrical recharging) of the
muscle cells in particular regions of the heart. Figure 1 shows a human ECG waveform and
the associated features. The standard features of the ECG waveform are the P wave, the
QRS complex and the T wave. Additionally a small U wave (following the T wave) is
occasionally present.

The cardiac cycle begins with the P wave (the start and end points of which are referred
to as Pon and Poff ), which corresponds to the period of atrial depolarization in the heart.
This is followed by the QRS complex, which is generally the most recognisable feature of
an ECG waveform, and corresponds to the period of ventricular depolarization. The start
and end points of the QRS complex are referred to as the Q and J points. The T wave
follows the QRS complex and corresponds to the period of ventricular repolarization. The
end point of the T wave is referred to as Toff and represents the end of the cardiac cycle
(presuming the absence of a U wave).



2.2 ECG Interval Analysis

The timing between the onset and offset of particular features of the ECG (referred to as an
interval) is of great importance since it provides a measure of the state of the heart and can
indicate the presence of certain cardiological conditions. The two most important intervals
in the ECG waveform are the QT interval and the PR interval. The QT interval is defined
as the time from the start of the QRS complex to the end of the T wave, i.e. Toff − Q, and
corresponds to the total duration of electrical activity (both depolarization and repolariza-
tion) in the ventricles. Similarly, the PR interval is defined as the time from the start of the
P wave to the start of the QRS complex, i.e. Q − Pon, and corresponds to the time from
the onset of atrial depolarization to the onset of ventricular depolarization.

The measurement of the QT interval is complicated by the fact that a precise mathematical
definition of the end of the T wave does not exist. Thus T wave end measurements are
inherently subjective and the resulting QT interval measurements often suffer from a high
degree of inter- and intra-analyst variability. An automated ECG interval analysis system,
which could provide robust and consistent measurements (together with an associated de-
gree of confidence in each measurement), would therefore be of great benefit to the medical
community.

2.3 Previous Work on Automated ECG Interval Analysis

The vast majority of algorithms for automated QT analysis are based on threshold methods
which attempt to predict the end of the T wave as the point where the T wave crosses a
predetermined threshold [3]. An exception to this is the work of Koski [4] who trained a
hidden Markov model on raw ECG data using the Baum-Welch algorithm. However the
performance of this model was not assessed against a labelled data set of ECG waveforms.
More recently, Graja and Boucher have investigated the use of hidden Markov tree models
for segmenting ECG signals encoded with the discrete wavelet transform [2].

3 Data Collection

In order to develop an automated system for ECG interval analysis, we collected a data
set of over 100 ECG waveforms (sampled at 500 Hz), together with the corresponding
waveform feature boundaries3 as determined by a group of expert ECG analysts. Due to
time constraints it was not possible for each expert analyst to label every ECG waveform
in the data set. Therefore we chose to distribute the waveforms at random amongst the
different experts (such that each waveform was measured by one expert only).

For each ECG waveform, the following points were labelled: Pon, Poff , Q, J and Toff (if a
U wave was present the Uoff point was also labelled). In addition, the point corresponding
to the start of the next P wave (i.e. the P wave of the following heart beat), NPon, was also
labelled. During the data collection exercise, we found that it was not possible to obtain
reliable estimates for the Ton and Uon points, and therefore these were taken to be the J
and Toff points respectively.

4 A Hidden Markov Model for ECG Interval Analysis

It is natural to view the ECG signal as the result of a generative process, in which each
waveform feature is generated by the corresponding cardiological state of the heart. In
addition, the ECG state sequence obeys the Markov property, since each state is solely

3We developed a novel software application which enabled an ECG analyst to label the boundaries
of each of the features of an ECG waveform, using a pair of “onscreen calipers”.



P wave 5.5 47.2 0.5 4.4 26.5 15.9
Baseline 1 1.7 80.0 1.6 1.3 9.5 5.9
QRS complex 1.0 11.3 79.0 4.6 2.7 1.4
T wave 0.9 1.8 1.2 83.6 7.3 5.2
Baseline 2 2.3 32.2 1.3 3.5 31.8 28.9
U wave 0.6 25.3 0.6 3.9 26.8 42.8

Table 1: Percentage confusion matrix for an HMM trained on the raw ECG data.

dependent on the previous state. Thus, hidden Markov models (HMMs) would seem ideally
suited to the task of segmenting an ECG signal into its constituent waveform features.

Using the labelled data set of ECG waveforms we trained a hidden Markov model in a su-
pervised manner. The model was comprised of the following states: P wave, QRS complex,
T wave, U wave, and Baseline. The parameters of the transition matrix aij were computed
using the maximum likelihood estimates, given by:

âij = nij/
∑

k

nik (1)

where nij is the total number of transitions from state i to state j over all of the label se-
quences. We estimated the observation (or emission) probability densities bi for each state
i by fitting a Gaussian mixture model (GMM) to the set of signal samples corresponding
to that particular state4. Model selection for the GMM was performed using the minimum
description length framework [1].

In our initial experiments, we found that the use of a single state to represent all the regions
of baseline in the ECG waveform resulted in poor performance when the model was used
to infer the underlying state sequence of new unseen waveforms. In particular, a single
baseline state allowed for the possibility of the model returning to the P wave state, follow-
ing a P wave - Baseline sequence. Therefore we decided to partition the Baseline state into
two separate states; one corresponding to the region of baseline between the Poff and Q
points (which we termed “Baseline 1”), and a second corresponding to the region between
the Toff and NPon points5 (termed “Baseline 2”).

In order to fully evaluate the performance of our model, we performed 5-fold cross-
validation on the data set of 100 labelled ECGs. Prior to training and testing, the raw
ECG data was pre-processed to have zero mean and unit energy. This was done in order
to normalise the dynamic range of the signals and stabilise the baseline sections. Once
the model had been trained, the Viterbi algorithm [9] was used to infer the optimal state
sequence for each of the signals in the test set.

Table 1 shows the resulting confusion matrix (computed from the state assignments on
a sample-point basis). Although reasonable classification accuracies are obtained for the
QRS complex and T wave states, the P wave state is almost entirely misclassified as Base-
line 1, Baseline 2 or U wave. In order to improve the performance of the model, we require
an encoding of the ECG that captures the key temporal and spectral characteristics of the
waveform features in a more informative representation than that of the raw time series
data alone. Thus we now examine the use of wavelet methods for this purpose.

4We also investigated autoregressive observation densities, although these were found to perform
poorly in comparison to GMMs.

5If a U wave was present the Uoff point was used instead of Toff .



P wave 74.2 14.4 0.1 0.3 11.0 0
Baseline 1 15.8 81.5 1.7 0.1 0.9 0
QRS complex 0 2.1 94.4 3.5 0 0
T wave 0 0 1.0 96.1 2.2 0.7
Baseline 2 1.4 0 0 1.6 95.6 1.4
U wave 0.1 0.1 0.1 1.7 85.6 12.4

Table 2: Percentage confusion matrix for an HMM trained on the wavelet encoded ECG.

4.1 Wavelet Encoding of ECG

Wavelets are a class of functions that possess compact support and form a basis for all
finite energy signals. They are able to capture the non-stationary spectral characteristics
of a signal by decomposing it over a set of atoms which are localised in both time and
frequency. These atoms are generated by scaling and translating a single mother wavelet.

The most popular wavelet transform algorithm is the discrete wavelet transform (DWT),
which uses the set of dyadic scales (i.e. those based on powers of two) and translates of
the mother wavelet to form an orthonormal basis for signal analysis. The DWT is therefore
most suited to applications such as data compression where a compact description of a
signal is required. An alternative transform is derived by allowing the translation parameter
to vary continuously, whilst restricting the scale parameter to a dyadic scale (thus, the
set of time-frequency atoms now forms a frame). This leads to the undecimated wavelet
transform6 (UWT), which for a signal s ∈ L

2(R), is given by:

wυ(τ) =
1√
υ

∫ +∞

−∞

s(t) ψ∗

(

t− τ

υ

)

dt υ = 2k, k ∈ Z, τ ∈ R (2)

where wυ(τ) are the UWT coefficients at scale υ and shift τ , and ψ∗ is the complex con-
jugate of the mother wavelet. In practice the UWT can be computed in O(N logN) using
fast filter bank algorithms [6].

The UWT is particularly well-suited to ECG interval analysis as it provides a time-
frequency description of the ECG signal on a sample-by-sample basis. In addition, the
UWT coefficients are translation-invariant (unlike the DWT coefficients), which is impor-
tant for pattern recognition applications.

In order to find the most effective wavelet basis for our application, we examined the per-
formance of HMMs trained on ECG data encoded with wavelets from the Daubechies,
Symlet, Coiflet and Biorthogonal wavelet families. In the frequency domain, a wavelet at
a given scale is associated with a bandpass filter7 of a particular centre frequency. Thus
the optimal wavelet basis will correspond to the set of bandpass filters that are tuned to the
unique spectral characteristics of the ECG.

In our experiments we found that the Coiflet wavelet with two vanishing moments resulted
in the highest overall classification accuracy. Table 2 shows the results for this wavelet.
It is evident that the UWT encoding results in a significant improvement in classification
accuracy (for all but the U wave state), when compared with the results obtained on the raw
ECG data.

6The undecimated wavelet transform is also known as the stationary wavelet transform and the
translation-invariant wavelet transform.

7These filters satisfy a constant relative bandwidth property, known as “constant-Q”.
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Figure 2: Histograms of the true state durations and those decoded by the HMM.

4.2 HMM State Durations

A significant limitation of the standard hidden Markov model is the manner in which it
models state durations. For a given state iwith self-transition coefficient aii, the probability
density of the state duration d is a geometric distribution, given by:

pi(d) = (aii)
d−1(1 − aii) (3)

For the waveform features of the ECG signal, this geometric distribution is inappropriate.
Figure 2 shows histograms of the true state durations and the durations of the states decoded
by the HMM, for each of the P wave, QRS complex and T wave states. In each case it
is clear that a significant number of decoded states have a duration that is much shorter
than the minimum state duration observed with real ECG signals. Thus for a given ECG
waveform the decoded state sequence may contain many more state transitions than are
actually present in the signal. The resulting HMM state segmentation is then likely to be
poor and the resulting QT and PR interval measurements unreliable.

One solution to this problem is to post-process the decoded state sequences using a median
filter designed to smooth out sequences whose duration is known to be physiologically
implausible. A more principled and more effective approach, however, is to model the
probability density of the individual state durations explicitly, using a hidden semi-Markov
model.

5 A Hidden Semi-Markov Model for ECG Interval Analysis

A hidden semi-Markov model (HSMM) differs from a standard HMM in that each of the
self-transition coefficients aii are set to zero, and an explicit probability density is specified
for the duration of each state [5]. In this way, the individual state duration densities govern
the amount of time the model spends in a given state, and the transition matrix governs
the probability of the next state once this time has elapsed. Thus the underlying stochastic
process is now a “semi-Markov” process.

To model the durations pi(d) of the various waveform features of the ECG, we used a
Gamma density since this is a positive distribution which is able to capture the inherent
skewness of the ECG state durations. For each state i, maximum likelihood estimates of
the shape and scale parameters were computed directly from the set of labelled ECG signals
(as part of the cross-validation procedure).

In order to infer the most probable state sequence Q = {q1q2 · · · qT } for a given obser-
vation sequence O = {O1O2 · · ·OT }, the standard Viterbi algorithm must be modified to
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Figure 3: Histograms of the true state durations and those decoded by the HSMM.

handle the explicit state duration densities of the HSMM. We start by defining the likeli-
hood of the most probable state sequence that accounts for the first t observations and ends
in state i:

δt(i) = max
q1q2···qt−1

p(q1q2 · · · qt = i, O1O2 · · ·Ot|λ) (4)

where λ is the set of parameters governing the HSMM. The recurrence relation for com-
puting δt(i) is then given by:

δt(i) = max
di

{

max
j

{

δt−di
(j)aji

}

pi(di)Πt
t′=t−di+1bi(Ot′)

}

(5)

where the outer maximisation is performed over all possible values of the state duration di

for state i, and the inner maximisation is over all states j. At each time t and for each state
i, the two arguments that maximise equation (5) are recorded, and a simple backtracking
procedure can then be used to find the most probable state sequence.

The time complexity of the Viterbi decoding procedure for an HSMM is given by
O(K2 T Dmax), where K is the total number of states, and Dmax is the maximum range
of state durations over all K states, i.e. Dmax = maxi(max(di) − min(di)). As noted
in [7], scaling the computation of δt(i) to avoid underflow is non-trivial. However, by
simply computing log δt(i) it is possible to avoid any numerical problems.

Figure 3 shows histograms of the resulting state durations for an HSMM trained on a
wavelet encoding of the ECG (using 5-fold cross-validation). Clearly, the durations of
the decoded state sequences are very well matched to the true durations of each of the
ECG features. This improvement in duration modelling is reflected in the accuracy and
robustness of the segmentations produced by the HSMM.

Model Pon Q J Toff

HMM on raw ECG 157 31 27 139
HMM on wavelet encoded ECG 12 11 20 46
HSMM on wavelet encoded ECG 13 3 7 12

Table 3: Mean absolute segmentation errors (in milliseconds) for each of the models.

Table 3 shows the mean absolute errors8 for the Pon, Q, J and Toff points, for each of the
models discussed. On the important task of accurately determining the Q and Toff points
for QT interval measurements, the HSMM significantly outperforms the HMM.

8The error was taken to be the time difference from the first decoded segment boundary to the
true segment boundary (of the same type).



6 Discussion

In this work we have focused on the two core issues in developing an automated system for
ECG interval analysis: the choice of representation for the ECG signal and the choice of
model for the segmentation. We have demonstrated that wavelet methods, and in particular
the undecimated wavelet transform, can be used to generate an encoding of the ECG which
is tuned to the unique spectral characteristics of the ECG waveform features. With this rep-
resentation the performance of the models on new unseen ECG waveforms is significantly
better than similar models trained on the raw time series data. We have also shown that the
robustness of the segmentation process can be improved through the use of explicit state
duration modelling with hidden semi-Markov models. With these models the detection ac-
curacy of the Q and Toff points compares favourably with current methods for automated
QT analysis [3, 2].

A key advantage of probabilistic models over traditional threshold-based methods for ECG
segmentation is that they can be used to generate a confidence measure for each segmented
ECG signal. This is achieved by considering the log likelihood of the observed signal
given the model, i.e. log p(O|λ), which can be computed efficiently for both HMMs and
HSMMs. Given this confidence measure, it should be possible to determine a suitable
threshold for rejecting ECG signals which are either too noisy or too corrupted to provide
reliable estimates of the QT and PR intervals. The robustness with which we can detect
such unreliable QT interval measurements based on this log likelihood score is one of the
main focuses of our current research.
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