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Abstract

This paper proposes neural mechanisms of transcranial magnetic stim-
ulation (TMS). TMS can stimulate the brain non-invasively through a
brief magnetic pulse delivered by a coil placed on the scalp, interfering
with specific cortical functions with a high temporal resolution. Due to
these advantages, TMS has been a popular experimental tool in various
neuroscience fields. However, the neural mechanisms underlying TMS-
induced interference are still unknown; a theoretical basis for TMS has
not been developed. This paper provides computational evidence that in-
hibitory interactions in a neural population, not an isolated single neuron,
play a critical role in yielding the neural interference induced by TMS.

1 Introduction

Transcranial magnetic stimulation (TMS) is an experimental tool for stimulating neurons
via brief magnetic pulses delivered by a coil placed on the scalp. TMS can non-invasively
interfere with neural functions related to a target cortical area with high temporal accuracy.
Because of these unique and powerful features, TMS has been popular in various fields,
including cognitive neuroscience and clinical application. However, despite its utility, the
mechanisms of how TMS stimulates neurons and interferes with neural functions are still
unknown. Although several studies have modeled spike initiation and inhibition with a
brief magnetic pulse imposed on an isolated single neuron [1][2], it is rather more plausible
to assume that a large number of neurons are stimulated massively and simultaneously
because the spatial extent of the induced magnetic field under the coil is large enough for
this to happen.

In this paper, we computationally analyze TMS-induced effects both on a neural population
level and on a single neuron level. Firstly, we demonstrate that the dynamics of a simple
excitatory-inhibitory balanced network well explains the temporal properties of visual per-
cept suppression induced by a single pulse TMS. Secondly, we demonstrate that sustained
inhibitory effect by a subthreshold TMS is reproduced by the network model, but not by an
isolated single neuron model. Finally, we propose plausible neural mechanisms underlying
TMS-induced interference with coordinated neural activities in the cortical network.



Figure 1: A) The network architecture. TMS was delivered to all neurons uniformly
and simultaneously. B) The bistability in the network. The afferent input consisted of
a suprathreshold transient and subthreshold sustained component leads the network into
the bistable regime. The parameters used here are ε = 0.1, β = 0.25, J0 = 73, J2 =
110, and T = 1.

2 Methods

2.1 TMS on neural population

2.1.1 Network model for feature selectivity

We employed a simple excitatory-inhibitory balanced network model that is well analyzed
as a model for a sensory feature detector system [3] (Fig. 1A):
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J(θ − θ′)m(θ′, t) + hext(θ, t) (2)

J(θ − θ′) = −J0 + J2 cos 2(θ − θ′) (3)

hext(θ, t) = c(t)[1 − ε + ε cos 2(θ − θ0)] (4)

Here, m(θ, t) is the activity of neuron θ and τm is the microscopic characteristic time
analogous to the membrane time constant of a neuron (Here we set τm = 10 ms). g[h] is a
quasi-linear output function,

g[h] =

{ 0 (h < T )
β(h − T ) (T ≤ h < T + 1/β)
1 (h ≥ T + 1/β)

(5)

where T is the threshold of the neuron, β is the gain factor, and h(θ, t) is the input to neuron
θ. For simplicity, we assume that m(θ, t) has a periodic boundary condition (−π/2 ≤ θ ≤
π/2), and the connections of each neuron are limited to this periodic range.

θ0 is a stimulus feature to be detected, and the afferent input, hext(θ, t), has its maximal
amplitude c(t) at θ = θ0. We assume a static visual stimulus so that θ0 is constant during
the stimulation (Hereafter we set θ0 = 0). ε is an afferent tuning coefficient, describing
how the afferent input to the target population has already been localized around θ0 (0 ≤
ε ≤ 1/2).

The synaptic weight from neuron θ to θ′, J(θ − θ′), consists of the uniform inhibition
J0 and a feature-specific interaction J2. J0 increases an effective threshold and regulates
the whole network activity through all-to-all inhibition. J2 facilitates neurons neighboring
in the feature space and suppresses distant ones through a cosine-type connection weight.



Through these recurrent interactions, the activity profile of the network evolves and sharp-
ens after the afferent stimulus onset.

The most intuitive and widely accepted example representable by this model is the orienta-
tion tuning function of the primary visual cortex [3][4][5]. Assuming that the coded feature
is the orientation of a stimulus, we can regard θ as a neuron responding to angle θ, hext as
an input from the lateral geniculate nucleus (LGN), and J as a recurrent interaction in the
primary visual cortex (V1).

Because the synaptic weight and afferent input have only the 0th and 2nd Fourier compo-
nents, the network state can be fully described by the two order parameters m0 and m2,
which are 0th- and 2nd-order Fourier coefficients of m(θ, t). The macroscopic dynamics
of the network is thus derived by Fourier transformation of m(θ, t),
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where m0(t) represents the mean activity of the entire network and m2(t) represents the
degree of modulation of the activity profile of the network. h(θ, t) is also described by the
order parameter,

h(θ, t) = −J0m0(t) + c(t)(1 − ε) + (εc(t) + J2m2(t)) cos 2θ (8)
Substituting Eq.8 into Eq.6 and 7, the network dynamics can be calculated numerically.

2.1.2 TMS induction

We assumed that the TMS perturbation would be constant for all neurons in the network
because the spatial extent of the neural population that we were dealing with is small com-
pared with the spatial gradient of the induced electric field. Thus we modified the input
function as ĥ(θ, t) = h(θ, t) + ITMS(t). Eq.6 to 8 were also modified accordingly by re-
placing h with ĥ. Here we employ a simple rectangular input (amplitude: ITMS, duration:
DTMS) as a TMS-like perturbation (see the middle graph of Fig. 2A).

2.1.3 Bistability and afferent input model

TMS applied to the occipital area after visual stimulus presentation typically suppresses its
visual percept [6][7][8]. To determine whether the network model produces suppression
similar to the experimental data, we applied a TMS-like perturbation at various timings
after the afferent onset and examined whether the final state was suppressed or not. For this
purpose, the network must hold two equilibria for the same afferent input condition and
reach one of them depending on the specific timing and intensity of TMS. We thus chose
proper sets of β, J0, and J2 that operated the network in the non-linear regime. In addition,
we employed an afferent input model consisting of suprathreshold transient (amplitude:
At > T , duration: Dt) and subthreshold sustained (amplitude: As < T ) components (see
the bottom graph of Fig. 2A). This is the simplest input model to lead the network into
the bistable range (Fig. 1B), yet it still captures the common properties of neural signals in
brain areas such as the LGN and visual cortex.

2.2 TMS on single neuron

2.2.1 Compartment model of cortical neuron

We also examined the effect of TMS on an isolated single neuron by using a compartment
model of a neocortical neuron analyzed by Mainen and Sejnowski [9]. The model included



 

Figure 2: A) The time course of the order parameters, the perturbation, and the afferent in-
put. B) The network state in the order parameter’s plane. The network bifurcates depending
on the induction timing of the perturbation and converges to either of the attractors. Two
examples of TMS induction timing (10 and 20 ms after the afferent onset) are shown here.
The dotted lines indicate the control condition without the perturbation in both graphs.

the following membrane ion channels: a low density of Na+ channels in soma and den-
drites and a high density in the axon hillock and the initial segment, fast K+ channels in
soma but not in dendrites, slow calcium- and voltage-dependent K+ channels in soma and
dendrites, and high-threshold Ca2+ channels in soma and dendrites. We examined several
types of cellular morphology as Mainen’s report but excluded axonal compartments in or-
der to evaluate the effect of induced current only from dendritic arborization. We injected a
constant somatic current and observed a specific spiking pattern depending on morphology
(Fig. 5).

2.2.2 TMS induction

There have been several reports on theoretically estimating the intracellular current in-
duced by TMS [1][2][10]. Here we briefly describe a simple expression for the axial and
transmembrane current induced by TMS. The electric field E induced by a brief mag-
netic pulse is given by the temporal derivative of the magnetic vector potential A, i.e.,
E(s, t) = −∂A(s, t)/∂t. Suppose the spatial gradient of the induced magnetic field is so
small compared to a single cellular dimension that E can be approximated to be constant
over all compartments. The simplest case is that one compartment has one distal and one
proximal connection, in which the transmembrane current can be defined as the difference
between the axial current going into and coming out of the adjacent compartment. The
axial current between the adjacent compartment can be uniquely determined by distance
and axial conductance between them (Fig. 5B),

ITMS
a (j, k) = Gjk

∫ sk

sj

E(s) · ds = GjkE · sjk. (9)

Hence the transmembrane current in the k-th compartment is,

ITMS
m (k) = ITMS

a (j, k) − ITMS
a (k, l) = E · (Gjksjk − Gklskl). (10)

Now we see that the important factors to produce a change in local membrane potential by
TMS are the differences in axial conductance and position between adjacent compartments.
As Nagarajan and Kamitani pointed out [1][2], if the cellular size is small, the heterogeneity
of the local cellular properties (e.g. branching, ending, bending of dendrites, and change in
dendrite diameter) could be crucial in inducing an intracellular current by TMS. A multiple
branching formulation is easily obtained from Eq.10. For simplicity, the induced electric
field was approximated as a rectangular pulse. The pulse’s duration was set to be 1 ms, as in
the network model, and the amplitude was varied within a physically valid range according
to the numerical experiment’s conditions.



Figure 3: A) The minimum intensity of the suppressive perturbation in our model (solid
line for single- and dashed line for paired-pulse). The width of each curve indicates the
suppressive latency range for a particular intensity of the perturbation (e.g. if At = 1.5 and
ITMS = 12, the network is suppressed during -35.5 to 64.2 ms for a single pulse case; thus
the suppressive latency range is 99.7 ms.) B) Experimental data of suppressive effect on
a character recognition task replotted and modified from [7] and [11]. Both graph A and
B equivalently indicate the susceptibility to TMS at the particular timing. To compare the
absolute timing, the model results must be biased with the proper amount of delay in neural
signal transmission given to the target neural population because these are measured from
the timing of afferent signal arrival, not from the onset of the visual stimulus presentation.

3 Results

3.1 Temporally selective suppression of neural population

The time course of the order parameters are illustrated in Fig. 2A. The network state can
be also depicted as a point on a two-dimensional plane of the order parameters (Fig. 2B).
Because TMS was modeled as a uniform perturbation, the mean activity, m0, was tran-
siently increased just after the onset of the perturbation and was followed by a decrease
of both m0 and m2. This result was obtained regardless of the onset timing of the per-
turbation. The final state of the network, however, critically depended on the onset timing
of the perturbation. It converged to either of the bistable states; the silent state in which
the network activity is zero or the active state in which the network holds a local excita-
tion. When the perturbation was applied temporally close to the afferent onset, the network
was completely suppressed and converged to the silent state. On the other hand, when the
perturbation was too early or too late from the afferent onset, the network was transiently
perturbed but finally converged to the active state.

We could thus find the latency range during which the perturbation could suppress the
network activity (Fig. 3A). The width of suppressive latency range increased with the am-
plitude of the perturbation and reached over 100 ms, which is comparable to typical experi-
mental data of suppression of visual percepts by occipital TMS [6][7]. When we supplied a
strong afferent input to the network, equivalent to a contrast increase in the visual stimulus,
the suppressive latency range narrowed and shifted upward, and consequently, it became
difficult to suppress the network activity without a strict timing control and larger ampli-
tude of the perturbation. These results also agree with experiments using visual stimuli of
various contrasts or visibilities [8][13]. The suppressive latency range consistently had a
bell shape with the bottom at the afferent onset regardless of parameter changes, indicating
that TMS works most suppressively at the timing when the afferent signal reaches the target



Figure 4: Threshold reduction by paired pulses in the steady state. A) Network model
and B) experimental data of the phosphene threshold replotted from [12]. The dashed line
indicates the threshold for a single pulse TMS.

neural population.

3.2 Sustained inhibition of neural population by subthreshold pulse

Multiple TMS pulses within a short interval, or repetitive TMS (rTMS), can evoke
phosphene or visual deficits even though each single pulse fails to elicit any perceptible
effect. This experimental fact suggests that a TMS pulse, even if it is a subthreshold one,
induces a certain sustained inhibitory effect and reduces the next pulse’s threshold to elicit
perceptible interference.

We considered the effect of paired pulses on a neural population and determined the dura-
tion of the threshold reduction by a subthreshold TMS. Here we set the subthreshold level
at the upper limit of intensity which could not suppress the network at the induction timing.
For the steady state, the initial subthreshold perturbation significantly reduced the suppres-
sive threshold for the subsequent perturbation; the original threshold level was restored to
more than 100 ms after the initial TMS (Fig. 4A). The threshold slightly increased when
the pulse interval was shorter than τm. These results agree with experimental data of oc-
cipital TMS examining the relationship between phosphene threshold and the paired-pulse
TMS interval [12] (Fig. 4B).

For the transient state, we also observed that the initial subthreshold perturbation, indicated
by the arrow in Fig. 3A, significantly reduced the suppressive threshold for the subsequent
perturbation, and consequently, the suppressive latency range was extended up to 60 ms
(Fig. 3A). These results are consistent with Amassian’s experimental results demonstrating
that a preceding subthreshold TMS to the occipital cortex increased the suppressive latency
range in a character recognition task [11] (Fig. 3B).

3.3 Transient inhibition of single neuron by subthreshold pulse

Next, we focus on the effect of TMS on a single neuron. Results from a layer V pyrami-
dal cell are illustrated in Fig. 5. An intense perturbation could inhibit the spike train for
over 100ms after a brief spike burst (Fig. 5C1). This sustained spike inhibition might be
caused by mechanisms similar to after-hyperpolarization or adaptation because the intra-
cellular concentration of Ca2+ rapidly increased during the bursting period. These results
are basically the same as Kamitani’s report [1] using Poisson synapses as current inputs to
the neuron. We tried several types of morphology and found that it was difficult to sup-
press their original spike patterns when the size of the neuron was small (e.g. stellate cell)
or when the neuron initially showed spike bursts (e.g. pyramidal cell with more bushy
dendritic arbors).



Figure 5: A) Layer V pyramidal cell. B) Compartment model of the neuron and the trans-
membrane current induced by TMS. C1, C2) The spike train perturbed by a suprathreshold
and subthreshold TMS. C3) The temporal variation of the TMS threshold for inducing the
spike inhibition. Thin lines in C1–C3 indicate the control condition without TMS.

Using a morphology whose spike train was most easily suppressed (i.e. a pyramidal cell in
Fig. 5A), we determined whether a preceding subthreshold pulse could induce the sustained
inhibitory effect. Here, the suppressive threshold was defined as the lowest intensity of the
perturbation yielding a spike inhibitory period whose duration was more than 100 ms. The
perturbation below the suppressive threshold caused the spike timing shift as illustrated in
Fig. 5C2. In the single cell’s case, the suppressive threshold highly depended on the relative
timing within the spike interval and repeated its pattern periodically. In the initial spike
interval from the subthreshold perturbation to the next spike, the suppressive threshold
decreased but it recovered to the original level immediately after the next spike initiation
(Fig. 5C3). This fast recovery of the suppressive threshold occurred regardless of the
induction timing of the subthreshold perturbation, indicating that the sustained inhibitory
effect by the preceding subthreshold perturbation lasted on the order of one (or two at most)
spike interval, even with the most suppressible neuron model. The result is incomparably
shorter than the experimental data as noted in Sec. 3.2, suggesting that it is impossible to
attribute the neural substrates of the threshold reduction caused by the subthreshold pulse
to only the membrane dynamics of a single neuron.

4 Discussion

This paper focused on the dichotomy to determine what is essential for TMS-induced
suppression–a network or a single neuron? Our current answer is that the network is es-
sential because the temporal properties of suppression observed in the neural population
model were totally consistent with the experimental data. In a single neuron model, we
can actually observe a spike inhibition whose duration is comparable to the silent period
of the electromyogram induced by TMS on the motor cortex [14]; however, the degree of
suppression is highly dependent on the property of the high-threshold Ca2+ channel and
is also very selective about the cellular morphology. In addition, the most critical point is
that the sustained inhibitory effect of a subthreshold pulse cannot be explained by only the
membrane mechanisms of a single neuron. These results indicate that TMS can induce a
spike inhibition or a spike timing shift on a single neuron level, which yet seems not enough
to explain the whole experimental data.



As Walsh pointed out [15], TMS is highly unlikely to evoke a coordinated activity pattern
or to stimulate a specific functional structure with a fine spatial resolution in the target corti-
cal area. Rather, TMS seems to induce a random activity irrespective of the existing neural
activity pattern. This paper simply modeled TMS as a uniform perturbation simultaneously
applied to all neurons in the network. Walsh’s idea and our model are basically equivalent
in that TMS gives a neural stimulation irrespective of the existing cortical activity evoked
by the afferent input. Thus inactive parts of the network, or opponent neurons far from
θ0, can be also activated by the perturbation if it is strong enough to raise such inactive
neurons above the activation threshold, resulting in suppression of the original local exci-
tation through lateral inhibitory connections. To suppress the network activity, TMS needs
to be applied before the local excitation is built up and the inactive neurons are strongly
suppressed. In the paired-pulse case, even though each TMS pulse was not strong enough
to activate the suppressed neurons, the pre-activation by the preceding TMS can facilitate
the subsequent TMS’s effect if it is applied until the network restores its original activity
pattern. These are the basic mechanisms of TMS-induced suppression in our model, by
which the computational results are consistent with the various experimental data. In addi-
tion to our computational evidence, recent neuropharmacological studies demonstrated that
GABAergic drugs [16] and hyperventilation environment [17] could modulate TMS effect,
suggesting that transsynaptic inhibition via inhibitory interneuron might be involved in
TMS-induced effects. All these facts indicate that TMS-induced neural interference is me-
diated by a transsynaptic network, not only by single neuron properties, and that inhibitory
interactions in a neural population play a critical role in yielding neural interference and its
temporal properties.
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