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Abstract

A general linear response method for deriving improved estimates of cor-
relations in the variational Bayes framework is presented. Three applica-
tions are given and it is discussed how to use linear response as a general
principle for improving mean field approximations.

1 Introduction

Variational and related mean field techniques have attracted much interest as methods for
performing approximate Bayesian inference, see e.g. [1]. The maturity of the field has
recently been underpinned by the appearance of the variational Bayes method [2, 3, 4] and
associated software making it possible with a window based interface to define and make
inference for a diverse range of graphical models [5, 6].

Variational mean field methods have shortcomings as thoroughly discussed by Mackay [7].
The most important is that it based upon the variational assumption of independent vari-
ables. In many cases where the effective coupling between the variables are weak this
assumption works very well. However, if this is not the case, the variational method can
grossly underestimate the width of marginal distributions because variance contributions
induced by other variables are ignored as a consequence of the assumed independence.
Secondly, the variational approximation may be non-convex which is indicated by the oc-
currence of multiple solutions for the variational distribution. This is a consequence of
the fact that a possibly complicated multi-modal distribution is approximated by a simpler
uni-modal distribution.

Linear response (LR) is a perturbation technique that gives an improved estimate of the cor-
relations between the stochastic variables by expanding around the solution to variational
distribution [8]. This means that we can get non-trivial estimates of correlations from the
factorizing variational distribution. In many machine learning models, e.g. Boltzmann ma-
chine learning [9] or probabilistic Independent Component Analysis [3, 10], the M-step of
the EM algorithm depend upon the covariances of the variables and LR has been applied
with success in these cases [9, 10].

Variational calculus is in this paper used to derive a general linear response correction from
the variational distribution. It is demonstrated that the variational LR correction can be
calculated as systematically the variational distribution in the Variational Bayes framework



(albeit at a somewhat higher computational cost). Three applications are given: a model
with a quadratic interactions, a Bayesian model for estimation of mean and variance of a 1D
Gaussian and a Variational Bayes mixture of multinomials (i.e. for modeling of histogram
data). For the two analytically tractable models (the Gaussian and example two above),
it is shown that LR gives the correct analytical result where the variational method does
not. The need for structured approximations, see e.g. [5] and references therein, that is
performing exact inference for solvable subgraphs, might thus be eliminated by the use of
linear response.

We define a general probabilistic model M for data y and model parameters s: p(s,y) =
p(s,y|M). The objective of a Bayesian analysis are typically the following: to derive
the marginal likelihood p(y|M) =

∫

ds p(s,y|M) and marginal distributions e.g. the
one-variable pi(si|y) = 1

p(y)

∫
∏

k 6=i dskp(s,y) and the two-variable pij(si, sj |y) =
1

p(y)

∫ ∏

k 6=i,j dskp(s,y). In this paper, we will only discuss how to derive linear response
approximations to marginal distributions. Linear response corrected marginal likelihoods
can also be calculated, see Ref. [11].

The paper is organized as follows: in section 2 we discuss how to use the marginal likeli-
hood as a generating functions for deriving marginal distributions. In section 4 we use this
result to derive the linear response approximation to the two-variable marginals and derive
an explict solution of these equations in section 5. In section 6 we discuss why LR in the
cases where the variational method gives a reasonable solution will give an even better re-
sult. In section 7, we give the three applications and in section we conclude and discuss
how to combine the mean field approximation (variational, Bethe,. . . ) with linear response
to give more precise mean field approaches.

After finishing this paper we have become aware of the work of Welling and Teh [12, 13]
which also contains the result eq. (8) and furthermore extend linear response to the Bethe
approximation, give several general results for the properties of linear response estimates
and derive belief propagation algorithms for computing the linear response estimates. The
new contributions of this paper compared to Refs. [12, 13] are the explicit solution of
the linear response equations, the discussion of the expected increased quality of linear
response estimates, the applications of linear response to concrete examples especially in
relation to variational Bayes and the discussion of linear response and mean field methods
beyond variational.

2 Generating Marginal Distributions

In this section it is shown how exact marginal distributions can be obtained from func-
tional derivatives of a generating function (the log partition function). In the derivation
of the variational linear response approximation to the two-variable marginal distribution
pij(si, sj |y), we can use result by replacing the exact marginal distribution with the varia-
tional approximation. To get marginal distributions we introduce a generating function

Z[a] =

∫

ds p(s,y)e
P

i
ai(si) (1)

which is a functional of the arbitrary functions ai(si) and a is shorthand for the vector of
functions a = (a1(s1), a2(s2), . . . , aN (sN )). We can now obtain the marginal distribution
p(si|y, a) by taking the functional derivative1 with respect to ai(si):

δ

δai(si)
lnZ[a] =

eai(si)

Z[a]

∫

∏

k 6=i

{

dŝke
ak(ŝk)

}

p(ŝ,y) = pi(si|y, a) . (2)

1The functional derivative is defined by
δaj(sj)

δai(si)
= δijδ(si − sj) and the chain rule.



Setting a = 0 above gives the promised result. The next step is to take the second deriva-
tive. This will give us a function that are closely related to the two-variable marginal
distribution. A careful derivation gives

Bij(si, s
′
j) ≡

δ2 lnZ[a]

δaj(s′j)δai(si)

∣

∣

∣

∣

∣

a=0

=
δpi(si|y, a)

δaj(s′j)

∣

∣

∣

∣

∣

a=0

(3)

= δijδ(si − s′j)pi(si|y) + (1 − δij)pij(si, s
′
j |y) − pi(si|y)pj(s

′
j |y)

Performing an average of sm
i (s′j)

n over Bij(si, s
′
j), it is easy to see that Bij(si, s

′
j) gives

the ’mean-subtracted’ marginal distributions. In the two next sections, variational approxi-
mations to the single variable and two-variable marginals are derived.

3 Variational Learning

In many models of interest, e.g. mixture models, exact inference scales exponentially with
the size of the system. It is therefore of interest to come up with polynomial approxi-
mations. A prominent method is the variational, where a simpler factorized distribution
q(s) =

∏

i qi(si) is used instead of the posterior distribution. Approximations to the
marginal distributions pi(si|y) and pij(si, sj |y) are now simply qi(si) and qi(si)qj(sj).
The purpose of this paper is to show that it is possible within the variational framework to
go beyond the factorized distribution for two-variable marginals. For this purpose we need
the distribution q(s) which minimizes the KL-divergence or ‘distance’ between q(s) and
p(s|y):

KL(q(s)||p(s|y)) =

∫

ds q(s) ln
q(s)

p(s|y)
. (4)

The variational approximation to the Likelihood is obtained from

− lnZv[a] =

∫

ds q(s) ln
q(s)

p(s,y)e
P

k
ak(ŝk)

= − lnZ[a] +KL(q(s)||p(s|y, a)) ,

where a has been introduced to be able use qi(si|a) as a generating function. In-
troducing Lagrange multipliers {λi} as enforce normalization and minimizing KL +
∑

i λi(
∫

dsiqi(si) − 1) with respect to qi(si) and λi, one finds

qi(si|a) =
eai(si)+

R

Q

k 6=i
{dskqk(sk |a)} ln p(s,y)

∫

dŝie
ai(ŝi)+

R

Q

k 6=i{dŝkqk(ŝk |a)} lnp(ŝ,y)
. (5)

Note that qi(si|a) depends upon all a through the implicit dependence in the qks appearing
on the right hand side. Writing the posterior in terms of ‘interaction potentials’, i.e. as a
factor graph

p(s,y) =
∏

i

ψi(si)
∏

i>j

ψi,j(si, sj) . . . , (6)

it is easy to see that potentials that do not depend upon si will drop out of variational
distribution. A similar property will be used below to simplify the variational two-variable
marginals.

4 Variational Linear Response

Eq. (3) shows that we can obtain the two-variable marginal as the derivative of the marginal
distribution. To get the variational linear response approximation we exchange the exact
marginal with the variational approximation eq. (5) in eq. (3). In section 6 an argument is



given for why one can expect the variational approach to work in many cases and why the
linear response approximation gives improved estimates of correlations in these cases.

Defining the variational ’mean subtracted’ two-variable marginal as

Cij(si, s
′
j |a) ≡

δqi(si|a)

δaj(s′j)
, (7)

it is now possible to derive an expression corresponding to eq. (3). What makes the deriva-
tion a bit cumbersome is that it necessary to take into account the implicit dependence of
aj(s

′
j) in qk(sk|a) and the result will consequently be expressed as a set of linear integral

equations in Cij(si, s
′
j |a). These equations can be solved explicitly, see section 5 or can as

suggested by Welling and Teh [12, 13] be solved by belief propagation.

Taking into account both explicit and implicit a dependence we get the variational linear
response theorem:

Cij(si, s
′
j |a) = δij

{

δ(si − s′j)qi(si|a) − qi(si|a)qj(s
′
j |a)

}

(8)

+qi(si|a)
∑

l6=i

∫

∏

k 6=i

dsk

∏

k 6=i,l

qk(sk|a)Clj (sl, s
′
j |a)

×

{

ln p(s,y) −

∫

dsiqi(si|a) ln p(s,y)

}

.

The first term represents the normal variational correlation estimate and the second term
is linear response correction which expresses the coupling between the two-variable
marginals.

Using the factorization of the posterior eq. (6), it is easily seen that potentials that do
not depend on both si and sl will drop out in the last term. This property will make the
calculations for the most variational Bayes models quite simple since this means that one
only has to sum over variables that are directly connected in the graphical model.

5 Explicit Solution

The integral equation can be simplified by introducing the symmetric kernel

Kij(s, s
′) = (1 − δij)

(

〈ln p(s,y)〉\(i,j) − 〈ln p(s,y)〉\j − 〈ln p(s,y)〉\i + 〈ln p(s,y)〉
)

,

where the brackets 〈. . .〉\(i,j) = 〈. . .〉q\(i,j) denote expectations over q for all vari-
ables, except for si and sj and similarly for 〈. . .〉\i. One can easily show that
∫

ds qi(s) Kij(s, s
′) = 0. Writing C in the form

Cij(s, s
′) = qi(s)qj(s

′)

{

δij

(

δ(s− s′)

qj(s′)
− 1

)

+Rij(s, s
′)

}

, (9)

we obtain an integral equation for the functionR

Rij(s, s
′) =

∑

l

∫

ds̃ ql(s̃)Kil(s, s̃)Rlj(s̃, s
′) +Kij(s, s

′) . (10)

This result can most easily be obtained by plugging the definition eq. (9) into eq. (8) and
using that

∫

ds qi(s) Rij(s, s
′) = 0. For many applications, kernels can be written in the

form of sums of pairwise multiplicative ‘interactions’, i.e.

Kij(s, s
′) =

∑

αα′

Jαα′

ij φα
i (s)φα′

j (s′) (11)



with 〈φα
i 〉q = 0 for all i and α then the solution will be on the form Rij(s, s

′) =
∑

αα′ Aαα′

ij φα
i (s)φα′

j (s′). The integral equation reduces to a system of linear equations

for the coefficients Aαα′

ij .

We now discuss the simplest case where Kij(s, s
′) = Jijφi(s)φj(s

′). This is obtained if
the model has only pairwise interactions of the quadratic form ψij(s, s

′) = eJijΦi(s)Φj(s
′),

where φi(s) = Φi(s) − 〈Φi〉q . Using Rij(s, s
′) = Aijφi(s)φj(s

′) and augmenting the
matrix of Jij ’s with the diagonal elements Jii ≡ − 1

〈φ2

i
〉q

yield the solution

Aij = −JiiJjj

(

D(Jii) − J−1
)

ij
, (12)

whereD(Jii) is a diagonal matrix with entries Jii. Using (9), this result immediately leads
to the expression for the correlations

〈φiφj〉 = 〈ΦiΦj〉 − 〈Φi〉〈Φj〉 = −(J−1)ij . (13)

6 Why Linear Response Works

It may seem paradoxical that an approximation which is based on uncorrelated variables
allows us to obtain a nontrivial result for the neglected correlations. To shed more light on
this phenomenon, we would like to see how the true partition function, which serves as a
generating function for expectations, differs from the mean field one when the approximat-
ing mean field distribution q are close. We will introduce into the generating function eq.
(1) the parameter ε:

Zε[a] =

∫

ds q(s)eε(
P

i
ai(si)+ln p(s|y)−ln q(s)) (14)

which serves as a bookkeeping device for collecting relevant terms, when ln p(s|y)−ln q(s)
is assumed to be small. At the end we will set ε = 1 sinceZ[a] = Zε=1[a]. Then expanding
the partition function to first order in ε, we get

lnZε[a] = ε

(

∑

i

〈ai(si)〉q + 〈ln p(s|y) − ln q(s)〉q

)

+O(ε2) (15)

= ε

(

∑

i

〈ai(si)〉q −KL(q||p)

)

+O(ε2) .

Keeping only the linear term, setting ε = 1 and inserting the minimizing mean field distri-
bution for q yields

pi(s|y, a) =
δ lnZ

δai(s)
= qi(s|a) + O(ε2) . (16)

Hence the computation of the correlations via

Bij(s, s
′) =

δ2 lnZ

δai(s)δaj(s′)
=
δpi(s|a)

δaj(s′)
=
δqi(s|a)

δaj(s′)
+ O(ε2) = Cij(s, s

′) + O(ε2) (17)

can be assumed to incorporate correctly effects of linear order in ln p(s|a) − ln q(s). On
the other hand, one should expect p(si, sj |y) − qi(si)qj(sj) to be order ε. Although the
above does not prove that diagonal correlations are estimated more precisely fromCii(s, s

′)
than from qi(s)–only that both are correct to linear order in ε—one often observes this in
practice, see below.



7 Applications

7.1 Quadratic Interactions

The quadratic interaction model—lnψij(si, sj) = siJijsj and arbitrary ψ(si), i.e.
ln p(s,y) =

∑

i lnψi(si) + 1
2

∑

i6=j siJijsj + constant—is used in many contexts, e.g.
the Boltzmann machine, independent component analysis and the Gaussian process prior.
For this model we can immediately apply the result eq. (13) to get

〈sisj〉 − 〈si〉〈sj〉 = −(J−1)ij (18)

where we have set Jii = −1/(〈s2i 〉q − 〈si〉
2
q).

We can apply this to the Gaussian model lnψi(si) = hisi + Ais
2
i /2, The variational

distribution is Gaussian with variance −1/Ai (and covariance zero). Hence, we can set
Jii = Ai. The mean is −[J−1h]i. The exact marginals have mean −[J−1h]i and co-
variance −[J−1]ij . The difference can be quite dramatic, e.g. in two dimensions for

J =

(

1 ε
ε 1

)

, we get J−1 = 1
1−ε2

(

1 −ε
−ε 1

)

. The variance estimates are 1/Jii = 1

for variational and [J−1]ii = 1/(1 − ε2) for the exact case. The latter diverges for com-
pletely correlated variable, ε→ 1 illustrating that the variational covariance estimate breaks
down when the interaction between the variables are strong.

A very important remark should be made at this point: although the covariance eq. (18)
comes out correctly, the LR method does not reproduce the exact two variable marginals,
i.e. the distribution eq. (9) plus the sum of the product of the one variable marginals is not
a Gaussian distribution.

7.2 Mean and Variance of 1D Gaussian

A one dimensional Gaussian observation model p(y|µ, β) =
√

β/2π exp(−β(x−µ)2/2),
β = 1/σ2 with a Gaussian prior over the mean and a Gamma prior over β [7] serves as an-
other example of where linear response—as opposed to variational—gives exact covariance
estimates. The N example likelihood can be rewritten as

p(y|µ, β) =

(

β

2π

)
N
2

exp

(

−
β

2
Nσ̂2 −

β

2
N(µ− y)2

)

, (19)

where y and σ̂2 =
∑

i(yi − y)2/N are the empirical mean and variance. We immediately
recognize −β

2N(µ− y)2 as the interaction term. Choosing non-informative priors—p(µ)
flat and p(β) ∝ 1/β—the variational distribution qµ(µ) becomes Gaussian with mean y
and variance 1/N〈β〉q and qβ(β) becomes a Gamma distribution Γ(β|b, c) ∝ βc−1e−β/b,
with parameters cq = N/2 and 1/bq = N

2 (σ̂2 + 〈(µ − y)2〉q). The mean and variance of
Gamma distribution are given by bc and b2c. Solving with respect to 〈(µ− y)2〉q and 〈β〉q

give 1/bq = Nσ̂2

2
N

N−1 . Exact inference gives cexact = (N −1)/2 and 1/bexact = Nσ̂2

2 [7].
A comparison shows that the mean bc is the same in both cases whereas variational under-
estimates the variance b2c. This is a quite generic property of the variational approach.

The LR correction to the covariance is easily derived from (13) setting J12 = −N/2 and
φ1(β) = β−〈β〉q and φ2(µ) = (µ− y)2 −〈(µ− y)2〉q . This yields J11 = −1/〈φ2

1(β)〉 =
−1/bq〈β〉q . Using 〈(µ − y)2〉q = 1/N〈β〉q and 〈(µ − y)4〉q = 3〈(µ − y)2〉2q , we have
J22 = −1/〈φ2

2(µ)〉 = −N2〈β〉2q/2. Inverting the 2 × 2 matrix J, we immediately get

〈φ2
1〉 = Var(β) = −(J−1)11 = bq〈β〉q/(1 − bq/2〈β〉q)

Inserting the result for 〈β〉q , we find that this is in fact the correct result.



7.3 Variational Bayes Mixture of Multinomials

As a final example, we take a mixture model of practical interest and show that linear
response corrections straightforwardly can be calculated. Here we consider the problem of
modeling histogram data ynj consisting of N histograms each with D bins: n = 1, . . . , N
and j = 1, . . . , D. We can model this with a mixture of multinomials (Lars Kai Hansen
2003, in preparation):

p(yn|πππ,ρρρ) =
K
∑

k=1

πk

D
∏

j=1

ρ
ynj

kj , (20)

where πk is the probability of the kth mixture and ρkj is the probability of observing the
jth histogram given we are in the kth component, i.e.

∑

k πk = 1 and
∑

j ρkj = 1.
Eventually in the variational Bayes treatment we will introduce Dirichlet priors for the
variables. But the general linear response expression is independent of this. To rewrite
the model such that it is suitable for a variational treatment—i.e. in a product form—we
introduce hidden (Potts) variables xn = {xnk}, xnk = {0, 1} and

∑

k xnk = 1 and write
the joint probability of observed and hidden variables as:

p(yn,xn|πππ,ρρρ) =

K
∏

k=1



πk

D
∏

j=1

ρ
ynj

kj





xnk

. (21)

Summing over all possible xn vectors, we recover the original observation model.

We can now identify the interaction terms in
∑

n ln p(yn,xn,πππ,ρρρ) as xnk lnπk and
ynjxnk ln ρkj . Generalizing eq. (8) to sets of variables, we can compute the following
correlations C(πππ,πππ′), C(πππ,ρρρ′) and C(ρρρk, ρρρ

′
k′ ). To get the explicit solution we need to

write the coupling matrix for the problem and add diagonal terms and invert. Normally,
the complexity will be order cubed in the number of parameters. However, it turns out
that the two variable marginal distributions involving the hidden variables—the number of
which scales with the number of examples—can be eliminated analytically. The computa-
tion of correlation are thus only cubic in the number of parameters, K + K ∗ D, making
computation of correlations attractive even for mixture models.

The symmetric coupling matrix for this problem can be written as

J =

(

Jxx Jxπππ Jxρρρ

Jπππx Jππππππ Jπρρρ

Jρρρx Jρπππ Jρρρρ

)

with Jρρρx =







Jρρρ
1
x1

· · · Jρρρ
1
xN

...
...

JρρρKx1
· · · JρρρKxN






, (22)

where for simplicity the log on π and ρ are omitted and (Jρρρkxn
)jk = ynj . The other non-

zero sub-matrix is: Jπππx = [Jπππx1
· · ·JπππxN

] with (Jπππxn
)kk′ = δk,k′ . To get the covariance

V we introduce diagonal elements into J (which are all tractable in 〈. . .〉 = 〈. . .〉q):

−(J−1
xnxn

)kk′ = 〈xnkxnk′ 〉 − 〈xnk〉〈xnk′ 〉 = δkk′ 〈xnk〉 − 〈xnk〉〈xnk′ 〉 (23)

−(J−1
ππππππ)kk′ = 〈lnπk lnπk′ 〉 − 〈ln πk〉〈lnπk′ 〉 (24)

−(J−1
ρρρkρρρk

)jj′ = 〈ln ρkj ln ρkj′ 〉 − 〈ln ρkj〉〈ln ρkj′ 〉 (25)

and invert: V = −J−1.

Using inversion by partitioning and the Woodbury formula we find the following simple
formula

Vππππππ =

(

Ĵππππππ − Jππππππ − Ĵπππρρρ

(

Ĵρρρρρρ − Jρρρρρρ

)−1

Ĵρρρπππ

)−1

, (26)

where we have introduced the ‘indirect’ couplings Ĵππππππ = JπππxJ
−1
xx

Jxπππ and Ĵπππρρρ =
JπππxJ

−1
xx

Jxρρρ. Similar formulas can be obtained for Vπππρρρ and Vρρρρρρ.



8 Conclusion and Outlook

In this paper we have shown that it is possible to extend linear response to completely gen-
eral variational distributions and solve the linear response equations explicitly. We have
given three applications that show 1. that linear response provides approximations of in-
creased quality for two-variable marginals and 2. linear response is practical for variational
Bayes models. Together this suggests that building linear response into variational Bayes
software such as VIBES [5, 6] would be useful.

Welling and Teh [12, 13] have, as mentioned in the introduction, shown how to apply the
general linear response methods to the Bethe approximation. However, the usefulness of
linear response even goes beyond this: if we can come up with a better tractable approx-
imation to the marginal distribution q(si) with some free parameters, we can tune these
parameters by requiring consistency between q(si) and the linear response estimate of the
diagonal of the two-variable marginals eq. (8):

Cii(si, s
′
i) = δ(si − s′i)q(si) − q(si)q(s

′
i) . (27)

This design principle can be generalized to models that give non-trivial estimates of two-
variable marginals such as Bethe. It might not be possible to match the entire distribution
for a tractable choice of q(si). In that case it is possibly to only require consistency for some
statistics. The adaptive TAP approach [11]—so far only studied for quadratic interactions—
can be viewed in this way. Generalizing this idea to general potentials, general mean field
approximations, deriving the corresponding marginal likelihoods and deriving guaranteed
convergent algorithms for the approximations are under current investigation.
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