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Abstract

The barn owl is a nocturnal hunter, capable of capturing prey using au-
ditory information alone[1]. The neural basis for this localization be-
havior is the existence of auditory neurons with spatial receptive fields
[2]. We provide a mathematical description of the operations performed
on auditory input signals by the barn owl that facilitate the creation of a
representation of auditory space. To develop our model, we first formu-
late the sound localization problem solved by the barn owl as a statistical
estimation problem. The implementation of the solution is constrained
by the known neurobiology.

1 Introduction

The barn owl shows great accuracy in localizing sound sources using only auditory in-
formation [1]. The neural basis for this localization behavior is the existence of auditory
neurons with spatial receptive fields called space specific neurons[2]. Experimental evi-
dence supports the hypothesis that spatial selectivity in auditory neurons arises from tuning
to a specific combination of the interaural time difference (ITD) and the interaural level
difference (ILD) [3]. Still lacking, however, is a complete account of how ITD and ILD
spectra are integrated across frequency to give rise to spatial selectivity. We describe a
computational model of the operations performed on the auditory input signals leading to
an initial representation of auditory space. We develop the model in the context of a statis-
tical estimation formulation of the localization problem that the barn owl must solve. We
use principles of signal processing and estimation theory to guide the construction of the
model, but force the implementation to respect neurobiological constraints.

2 The environment

The environment consists ofNs point sources and a source of ambient noise. Each point
source is defined by a sound signal,si(t), and a direction(θi, φi) whereθi is the azimuth
andφi is the elevation of the source relative to the owl’s head. In general, source loca-
tion may change over time. For simplicity, however, we assume that source locations are
fixed. Source signals can be broadband or narrowband. Signals with onsets are modeled as



broadbandnoise signals modulated by a temporal envelope,si(t) = [
∑Ni

n=1 win(t)]ni(t),
wherewin(t) = Aine−

1
2 (t−cin)2/σ2

in andni(t) is Gaussian white noise bandlimited to12
kHz (see figure(4A)). The ambient noise is described below.

3 Virtual Auditory Space

The first step in the localization process is the location-dependent mapping of source signals
to the received pressure waveforms at the eardrums. For a given source location, the system
describing the transformation of a source signal to the waveform received at the eardrum is
well approximated by a linear system. This system is characterized by its transfer function
called the head related transfer function (HRTF) or, equivalently, by its impulse response,
the head related impulse response (HRIR). Additionally, when multiple sources are present
the composite waveform at each ear is the sum of the waveforms received due to each
source alone. Therefore, we model the received pressure waveforms at the ears as

rL(t) =
Ns∑

i=1

hL(θi,φi)(t)∗si(t)+nL(t) and rR(t) =
Ns∑

i=1

hR(θi,φi)(t)∗si(t)+nR(t) (1)

wherehL(θ,φ)(t) andhR(θ,φ)(t) are the HRIRs for the left and right ears, respectively, when
the source location is(θ, φ), [4], andnL(t), nR(t) are the ambient noises experienced by
the left and right ears, respectively. For our simulations, the ambient noise for each ear
is created using a sample of a natural sound recording of a stream,sb(t) [5]. The sample
is filtered by HRIRs for all locations in the frontal hemisphere,Ω, then averaged so that
nL(t) = 1

|Ω|
∑

i∈Ω hL(θi,φi)(t) ∗ sb(t) andnR(t) = 1
|Ω|

∑
i∈Ω hR(θi,φi)(t) ∗ sb(t).

4 Cue Extraction

In our model, location information is not inferred directly from the received signals but is
obtained from stimulus-independent binaural location cues extracted from the input signals
[6],[7]. The operations used in our model to process the auditory input signals and extract
cues are motivated by the known processing in the barn owl’s auditory system and by the
desire to extract stimulus-independent location cues from the auditory signals that can be
used to infer the locations of sound sources.

4.1 Cochlear processing

In the first stage of our model, input signals are filtered with a bank of linear band-pass
filters. Following linear filtering, input signals undergo half-wave rectification. So, the
input signals to the two earsrL(t) andrR(t) are decomposed into a set of scalar valued
functionsuL(t, ωk) anduR(t, ωk) defined by

uL(t, ωk) = [fωk
? rL(t)]+ and uR(t, ωk) = [fωk

? rR(t)]+ (2)

wherefωk
(t) is the linear bandpass filter for the channel with center frequencyωk. Here

we use the standard gammatone filterfωk
(t) = tγ−1e−t/τk cos(ωkt) with γ = 4 [8].

Following rectification there is a gain control step that is a modified version of the divisive
normalization model of Schwartz and Simoncelli[9]. We introduce intermediate variables
γL(t, ωk) andγR(t, ωk) that dynamically compute the intensity of the signals within each
frequency channel as

γ̇L(t, ωk) = −γL(t, ωk)
τ

+
uL(t, ωk)∑

n aknγ(t, ωn) + σ
(3)



and

γ̇R(t, ωk) = −γR(t, ωk)
τ

+
uR(t, ωk)∑

n aknγ(t, ωn) + σ
(4)

whereγ(t, ωn) = γL(t, ωk) + γR(t, ωk). We define the output of the cochlear filter in
frequency channelk to be

vL(t, ωk) =
uL(t, ωk)∑

n aknγ(t, ωn) + σ
and vR(t, ωk) =

uR(t, ωk)∑
n aknγ(t, ωn) + σ

(5)

for the left and right, respectively. Note that the rectified outputs from the left and right ears,
uL(t, ωk) anduR(t, ωk), are normalized by the same term so that binaural disparities are
not introduced by the gain control operation. Initial cue extraction operations are performed
within distinct frequency channels established by this filtering process.

4.2 Level difference cues

The level difference pathway has two stages. First, the outputs of the filter banks are
integrated over time to obtain windowed intensity measures for the components of the
left and right ear signals. Next, signals from the left and right ears are combined within
each frequency channel to measure the location dependent level difference. We compute
the intensity of the signal in each frequency channel over a small time window,w(t), as:

yL(t, ωk) =
∫ t

0

vL(σ, ωk)w(t− σ)dσ and yR(t, ωk) =
∫ t

0

vR(σ, ωk)w(t− σ)dσ. (6)

We use a simple exponential windoww(t) = e−t/τH(t) whereH(t) is the unit step func-
tion.

The magnitude ofyL(t, ωk) andyR(t, ωk) vary with both the signal intensity and the gain
of the HRIR in the frequency band centered atωk. To compute the level difference between
the input signals that is introduced by the HRIRs in a manner that is invariant to changes in
the intensity of the source signal we compute

z(t, ωk) = log(
yR(t, ωk)
yL(t, ωk)

). (7)

4.3 Temporal difference cues

We use a modified version of the standard windowed cross correlation operation to measure
time differences. Our modifications incorporate three features that model processing in the
barn owl’s auditory system. First, signals are passed through a saturating nonlinearity to
model the saturation of the nucleus magnocellularis (NM) inputs to the nucleus laminaris
(NL) [10]. We defineχL(t, ωk) = F (vL(t, ωk)) andχR(t, ωk) = F (vR(t, ωk)), where
F (·) is a saturating nonlinearity. Letx(t, ωk,m) denote the value of the cross correlation
in frequency channelk at delay indexm ∈ {0, . . . , N}, defined by

ẋ(t, ωk, m) = −x(t, ωk,m)
τ(y(t, ωk))

+ [χL(t−∆m,ωk) + α][χR(t−∆(N −m), ωk) + β]. (8)

Here, τ(y(t, ωk)) is a time constant that varies with the intensity of the stimulus in the
frequency channel wherey(t, ωk) = yL(t, ωk)+yR(t, ωk). The time constant decreases as
y(t, ωk) increases, so that for more intense sounds information is integrated over a smaller
time window. This operation functions as a gain control and models the inhibition of NL
neurons by superior olive neurons[11]. The constantsα, β > 0 are included to reflect the
fact that NL neurons respond to monaural stimulation,[12], and are chosen so that at input
levels above threshold (0− 5 dB SPL) the cross correlation term dominates. We choose
the delay increment∆ to satisfy∆N = 200µs so that the full range of possible delays is
covered.



5 Representing auditory space

The general localization problem that the barn owl must solve is that of localizing multiple
objects in its environment using both auditory and visual cues. An abstract discussion
of a possible solution to the localization problem will motivate our model of the owl’s
initial representation of auditory space. LetNs(t) denote the number of sources at time
t. Assume that each source is characterized by the direction pair(θi, φi) that obeys a
dynamical system(θ̇i, φ̇i) = f(θi, φi, µi) whereµi is a noise term andf : R3 → R2 is a
possibly nonlinear mapping. We assume that(θi(t), φi(t)) defines a stationary stochastic
process with known densityp(θi, φi) [6],[7]. At time t, let ξa

t denote a vector of cues
computed from auditory input and letξv

t denote a vector of cues computed from visual
input. The problem is to estimate, at each time, the number and locations of sources in
the environment using past measurements of the auditory and visual cues at a finite set of
sample times. A simple Bayesian approach is to introduce a minimal state vectorαt =
[θ(t) φ(t)]T where α̇t = f(αt, µt) and compute the posterior density ofαt given the
cue measurements. Here the number and locations of sources can be inferred from the
existence and placement of multiple modes in the posterior. If we assume that the state
sequence{αtn} is a Markov process and that the state is conditionally independent of past
cue measurements given the present cue measurement, then we can recursively compute
the posterior through a process of prediction and correction described by the equations

p(αtn |ξt1:tn−1) =
∫ ∫

p(αtn |αtn−1)p(αtn−1 |ξt1:tn−1)dαtn−1 (9)

p(αtn |ξt1:tn) ∝ p(ξtn |αtn)p(αtn |ξt1:tn−1) = p(ξa
tn
|αtn)p(ξv

tn
|αtn)p(αtn |ξt1:tn−1) (10)

whereξt = [ξa
t ξv

t ]T . This formulation suggests that at each time auditory space can be
represented in terms of the likelihood functionp(ξa

t |θ(t), φ(t)).

6 Combining temporal and intensity difference signals

To facilitate the calculation of the likelihood function over the locations, we in-
troduce compact notation for the cues derived from the auditory signals. Let
x(t, ωk) = [x(t, ωk, 0), . . . , x(t, ωk, N)]/‖[x(t, ωk, 0), . . . , x(t, ωk, N)]‖ be the normal-
ized vector of cross correlations computed within frequency channelk. Let x(t) =
[x(t, ω1), . . . ,x(t, ωNF

)] denote the spectrum of cross correlations and letz(t) =
[z(t, ω1), . . . , z(t, ωNF )] denote the spectrum of level differences whereNF is the num-
ber of frequency channels. Letξa

t = [x(t) z(t)]T . We assume thatξa
t = [x(t) z(t)]T =

[x̄(θ, φ) z̄(θ, φ)]T + η(t) wherex̄(θ, φ) and z̄(θ, φ) are the expected values of the cross
correlation and level difference spectra, respectively, for a single source located at(θ, φ),
andη(t) is Gaussian white noise[6],[7].
Experimental evidence about the nature of auditory space maps in the barn owl suggests
that spatial selectivity occurs after both the combination of temporal and level difference
cues and the combination of information across frequency[3],[13]. The computational
model specifies that the transformation from cues computed from the auditory input sig-
nals to a representation of space occurs by performing inference on the cues through the
likelihood function

p(ξa
t |θ, φ) = p(x(t), z(t)|θ, φ) ∝ exp(−1

2
‖(x(t), z(t))− (x̄(θ, φ), z̄(θ, φ))‖2

Σ−1
n

). (11)

The known physiology of the barn owl places constraints on how this likelihood function
can be computed. First, the spatial tuning of auditory neurons in the optic tectum is con-
sistent with a model where spatial selectivity arises from tuning to combinations of time
difference and level difference cues within each frequency channel[14]. This suggests
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Figure 1: Non-normalized likelihood functions att = 26 ms with sources located at
(−25o, 0o) and (0o, 25o). Source signals ares1(t) = A

∑
i cos(ωi1(t)) and s2(t) =

A
∑

j cos(ωj2(t)) whereωi1 6= ωj2 for any i, j. Left: Linear model of frequency com-
bination. Right: Multiplicative model of frequency combination.

that time and intensity information is initially combined multiplicatively within frequency
channels.
Given this constraint we propose two models of the frequency combination step. In the first
model of frequency integration we assume that the likelihood is a product of kernels

p(x(t), z(t)|θ, φ) ∝
∏

k

K(x(t, ωk), z(t, ωk); θ, φ). (12)

Each kernel is a product of a temporal difference function and a level difference function
to respect the first constraint,

K(x(t, ωk), z(t, ωk); θ, φ) = Kx(x(t, ωk); θ, φ)Kz(z(t, ωk); θ, φ). (13)

If we require that each kernel is normalized,∫ ∫
K(x(t∗, ωk), z(t∗, ωk); θ, φ)dx(t∗, ωk)dz(t∗, ωk) = 1, for eacht∗ then the multiplica-

tive model is a factorization of the likelihood into a product of the conditional probabilities
p(x(t∗, ωk), z(t∗, ωk)|θ, φ). The second model is a linear model of frequency integration
where the likelihood is approximated by a kernel estimate of the form

p(x(t), z(t)|θ, φ) ∝
∑

k

ck(y(t, ωk))K(x(t, ωk), z(t, ωk); θ, φ) (14)

where each kernel is of the above product form. We again assume that the kernels are
normalized, but we weight each kernel by the intensity of the signal in that frequency
channel.
Experiments performed in multiple source environments by Takahashi et al. suggest that
information is not multiplied across frequency channels[15]. Takahashi et al. measured the
response of space specific neurons in the external nucleus of the inferior colliculus under
conditions of two sound sources located on the horizontal plane with each signal consisting
of a unique combination of sinusoids. Their results suggest that a bump of activity will
be present at each source location in the space map. Using identical stimuli (see Table1
columns A and C in[15]) we compute the likelihood function using the linear model and
the multiplicative model. The results shown in figure(1) demonstrate that with a linear
model the likelihood function will display a peak corresponding to each source location,
but with the multiplicative model only a spurious location that is consistent among the
kernels remains and information about the two sources is lost. Therefore, we use a model
in which time difference and level difference information is first combined multiplicatively
within frequency channels and is then summed across frequency.

7 Examples

7.1 Parameters

In each example stimuli are presented for100 ms and HRIRs for owl884 recorded by Keller
et al.,[4], are used to generate the input signals. We use six gammatone filters for each ear
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Figure2: Non-normalized likelihood functions att = 21.1 ms for a single source located
at (−25o,−15o). Left: Broadband source signal at50 dB SPL. Right: Source signal is a7
kHz tone at50 dB SPL.
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Figure3: Non-normalized likelihood functions under conditions of summing localization.
In each case sources are located at(−20o, 0o) and(20o, 0o) and produce scaled versions
of the same waveform. Left: Left signal at50 dB SPL, right signal at40 dB SPL. Center:
Left signal at50 dB SPL, right signal at50 dB SPL. Right: Left signal at40 dB SPL, right
signal at50 dB SPL.

with center frequencies{4.22, 5.14, 6.16, 7.26, 8.47, 9.76} kHz, andQ10 values chosen to
match the auditory nerve fiber data of Köppl [16]. In each example we use a Gaussian form
for the temporal and level difference kernels,Kx(x(t, ωk); θ, φ) ∝ exp(− 1

2‖x(t, ωk) −
x̄(θ, φ)‖2/σ2) andKz(z(t, ωk); θ, φ) ∝ exp(− 1

2‖z(t, ωk) − z̄(θ, φ)‖2/σ2) whereσ2 =
0.1. The terms̄x(θ, φ) andz̄(θ, φ) correspond to the time average of the cross correlation
and level difference cues for a broadband noise stimulus. Double polar coordinates are
used to describe source locations. Only locations in the frontal hemisphere are considered.
Ambient noise is present at10 dB SPL.

7.2 Single source

In figure (2) we show the approximate likelihood function of equation(19) at a single
time during the presentation of a broadband noise stimulus and a7 kHz tone from direction
(−25o,−15o). In response to the broadband signal there is a peak at the source location. In
response to the tone there is a peak at the true location and significant peaks near(60o,−5o)
and(20o,−25o).

7.3 Multiple sources

In figure (3) we show the response of our model under the condition of summing local-
ization. The top signal shown in figure(4A) was presented from(−20o, 0o) and(20o, 0o)
with no delay between the two sources, but with varied intensities for each signal. In each
case there is a single phantom bump at an intermediate location that is biased toward the
more intense source.
In figure (4) we simulate an echoic environment where the signal at the top of4A is pre-
sented from(−20o, 0o) and a copy delayed by2 ms shown at the bottom of4A is presented
from (20o, 0o). We plot the likelihood function at the three times indicated by vertical dot-
ted lines in4A. At the first time the initial signal dominates and there is a peak at the
location of the leading source. At the second time when both the leading and lagging
sounds have similar envelope amplitudes there is a phantom bump at an intermediate, al-
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Figure 4: Non-normalized likelihoods under simulated echoic conditions. The leading
signal is presented from(−20o, 0o) and the lagging source from(20o, 0o). Both signals
are presented at50 dB SPL. A: The top signal is the leading signal and the bottom is the
lagging. Vertical lines show times at which the likelihood function is plotted in B,C,D. B:
Likelihood att = 14.3 ms. C: Likelihood att = 21.1 ms. D: Likelihood att = 30.6 ms.

though elevated, location. At the third time where the lagging source dominates there are
peaks at both the leading and lagging locations.

8 Discussion

We used a Bayesian approach to the localization problem faced by the barn owl to guide
our modeling of the computational operations supporting sound localization in the barn
owl. In the context of our computational model, auditory space is initially represented in
terms of a likelihood function parameterized by time difference and level difference cues
computed from the auditory input signals.
In transforming auditory cues to spatial locations, the model relies on stimulus invariance
in the cue values achieved by normalizing the cross correlation vector and computing a
ratio of the left and right signal intensities within each frequency channel. It is not clear
from existing experimental data where or if this invariance occurs in the barn owl’s auditory
system.
In constructing a model of the barn owl’s solution to the estimation problem, the opera-
tions that we employ are constrained to be consistent with the known physiology. As stated
above, physiological data is consistent with the multiplication of temporal difference and
level difference cues in each frequency channel, but not with multiplication across fre-
quency. This model does not explain, however, across frequency nonlinearities that occur
in the processing of temporal difference cues[17].
The likelihood function used in our model is a linear approximation to the likelihood speci-
fied in equation(11). The multiplicative model clearly does not explain the response of the
space map to multiple sound sources producing spectrally nonoverlapping signals[15]. The
linear approximation may reflect the requirement to function in a multiple source environ-
ment. We must more precisely define the multi-target tracking problem that the barn owl
solves and include all relevant implementation constraints before interpreting the nature of
the approximation.
The tuning of space specific neurons to combinations of ITD and ILD has been interpreted
as a multiplication of ITD and ILD related signals[3]. Our model suggests that, to be
consistent with known physiology, the multiplication of ITD and ILD signals occurs in the
medial portion of the lateral shell of the central nucleus of the inferior colliculus before
frequency convergence[13]. Further experiments must be done to determine if the multi-
plication is a network property of the first stage of lateral shell neurons or if multiplication
occurs at the level of single neurons in the lateral shell.
We simulated the model’s responses under conditions of summing localization and simu-
lated echoes. The model performs as expected for two simultaneous sources with a phan-
tom bump occurring in the likelihood function at a location intermediate between the two
source locations. Under simulated echoic conditions the likelihood shows evidence for
both the leading and lagging source, but only the leading source location appears alone.



This suggests that with this instantaneous estimation procedure the lagging source would
be perceptible as a source location, however, possibly less so than the leading. It is likely
that a feedback mechanism, such as the Bayesian filtering described in equations(14) and
(15), will need to be included to explain the decreased perception of lagging sources.
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