
Fast Algorithms for Large-State-Space HMMs with
Applications to Web Usage Analysis

Pedro F. Felzenszwalb1, Daniel P. Huttenlocher2, Jon M. Kleinberg2

1AI Lab, MIT, Cambridge MA 02139
2Computer Science Dept., Cornell University, Ithaca NY 14853

Abstract

In applying Hidden Markov Models to the analysis of massive data
streams, it is often necessary to use an artificially reduced set of
states; this is due in large part to the fact that the basic HMM
estimation algorithms have a quadratic dependence on the size of
the state set. We present algorithms that reduce this computational
bottleneck to linear or near-linear time, when the states can be
embedded in an underlying grid of parameters. This type of state
representation arises in many domains; in particular, we show an
application to traffic analysis at a high-volume Web site.

1 Introduction

Hidden Markov Models (HMMs) are used in a wide variety of applications where
a sequence of observable events is correlated with or caused by a sequence of un-
observable underlying states (e.g., [8]). Despite their broad applicability, HMMs
are in practice limited to problems where the number of hidden states is relatively
small. The most natural such problems are those where some abstract categoriza-
tion provides a small set of discrete states, such as phonemes in the case of speech
recognition or coding and structure in the case of genomics. Recently, however,
issues arising in massive data streams, such as the analysis of usage logs at high-
traffic Web sites, have led to problems that call naturally for HMMs with large state
sets over very long input sequences.

A major obstacle in scaling HMMs up to larger state spaces is the computational
cost of implementing the basic primitives associated with them: given an n-state
HMM and a sequence of T observations, determining the probability of the observa-
tions, or the state sequence of maximum probability, takes O(Tn2) time using the
forward-backward and Viterbi algorithms. The quadratic dependence on the num-
ber of states is a long-standing bottleneck that necessitates a small (often artificially
coarsened) state set, particularly when the length T of the input is large.

In this paper, we present algorithms that overcome this obstacle for a broad class
of HMMs. We improve the running times of the basic estimation and inference
primitives to have a linear or near-linear dependence on the number of states, for
a family of models in which the states are embedded as discrete grid points in an
underlying parameter space, and the state transition costs (the negative logs of



the state transition probabilities) correspond to a possibly non-metric distance on
this space. This kind of embedded-state model arises in many domains, including
object tracking, de-noising one-dimensional signals, and event detection in time
series. Thus the algorithms can be seen as extending the applicability of HMMs to
problems that are traditionally solved with more restricted linear Gaussian state-
space models such as Kalman filtering. Non-Gaussian state-space techniques are
a research focus in their own right (e.g., [6]) and our methods could be used to
improve their efficiency.

Given a structured embedding of states in an underlying d-dimensional space, our
approach is to reduce the amount of work in the dynamic programming iterations
of the Viterbi and forward-backward algorithms. For the Viterbi algorithm, we
make use of distance transform (also known as Voronoi surface) techniques, which
are widely used in computer vision, image processing, and discrete computational
geometry [2]. For a broad class of distance functions on the embedding space
(including functions that are far from obeying the triangle inequality), we are able
to run each dynamic programming step of the Viterbi algorithm in O(n) time,
yielding an overall running time of O(Tn). In the case of the forward-backward
algorithm, we are able to achieve O(Tn) time for any transition probabilities that
can be decomposed into a constant number of box filters [10]. Box filters are discrete
convolution kernels that can be computed in linear time; many functions, including
the Gaussian, can be expressed or approximated as the composition of a few box
filters. Moreover, in the case of the forward-backward algorithm, we are able to
obtain a running time of O(Tn log n) for arbitrary state transition probabilities, as
long as they are based only on differences in the embedded positions of the states.

A motivating application for our work comes from the analysis of Web usage data
[1]. We focus on the Internet Archive site (www.archive.org) as a prototypical
example of a high-traffic site (millions of page-visits per month) offering an array
of digital items for download. An important question at such a site is to determine
variations in user interest in the items being offered. We use a coin-tossing HMM
model in which the discrete states correspond to the current probability of a user
downloading a given item; this state set has a natural embedding in the interval
[0, 1]. We study the effect of increasing the number of states, and find that a fairly
large state set (of size roughly a hundred or more) is needed in order to detect
brief but significant events that affect the download rate. With tens of millions of
observations and a state set of this size, practical analysis would be computationally
prohibitive without the faster HMM algorithms described here.

It should be noted that our methods can also be used in belief revision and belief
propagation algorithms for Bayesian networks (e.g., [7]), as these algorithms are
essentially variants of the Viterbi and forward-backward algorithms for HMMs.
The methods are also applicable to continuous Markov models, which have recently
been employed for Web user modeling based on duration of page views [9].

2 Hidden Markov Models

We briefly review HMMs; however we assume that the reader is familiar both with
HMMs and with the Viterbi and forward-backward estimation algorithms. Rabiner
[8] provides a good introduction to HMMs; we use notation similar to his. An HMM
can be represented by a 5-tuple λ = (S, V, A, B, π) where S = {s1, . . . , sn} is a finite
set of (hidden) states, V = {v1, . . . , vm} is a finite set of observable symbols, A is an
n×n matrix with entries aij corresponding to the probability of going from state i
to state j, B = {bi(k)} where bi(k) specifies the probability of observing symbol vk

in state si, and π is an n-vector with each entry πi corresponding to the probability



Function Viterbi Forward-Backward
aij = p if |i − j| ≤ d,
aij = 0 otherwise

Min-filter Box sum

aij ∝ exp(−|i − j|2/2σ2) L2
2 dist. trans. Gaussian approx.

aij ∝ exp(−k|i − j|) L1 dist. trans. FFT

aij = p if |i − j| ≤ d,
aij = q otherwise

Combin. min-filter Combin. box sum

aij ∝ exp(−|i − j|2/2σ2)
if |i − j| ≤ d,

aij ∝ exp(−k|i − j|) otherwise
Combin. dist. trans. FFT

Table 1: Some transition probabilities that can be handled efficiently using our
techniques (see text for an explanation). All running times are O(Tn) except those
using the FFT which are O(Tn log n).

that the initial state of the system is si.

Let qt denote the state of the system at time t, while ot denotes the observed
symbol at time t. Given a sequence of observations O = (o1, . . . , oT ) there are three
standard estimation (or inference) problems that have wide applications:

1. Find a state sequence Q = (q1, . . . , qT ) maximizing P (Q|O, λ).

2. Compute P (O|λ), the probability of an observation sequence being gener-
ated by λ.

3. Compute the posterior probabilities of each state, P (qt = si|O, λ).

As is well known these problems can be solved in O(Tn2) time using the Viterbi
algorithm for the first task and the forward-backward algorithm for the others. We
show how to solve them more efficiently for a wide range of transition probabili-
ties based on differences between states that are embedded in an underlying grid.
This grid can be multi-dimensional, however in this paper we consider only the
one-dimensional case. Table 1 lists some widely applicable transition probability
distributions that can be handled by our methods. The algorithms for each distri-
bution differ slightly and are explained in the subsequent sections. The distributions
given in the bottom part of the table can be computed as combinations of the ba-
sic distributions in the top part. Other distributions can be obtained using these
same combination techniques, as long as only a constant number of distributions
are being combined.

An additional problem, which we do not explicitly consider here, is that of determin-
ing the best model λ given some set of observed sequences {O1, . . . , Ol}. However
the most widely used technique for solving this problem, expectation maximiza-
tion (EM), requires repeatedly running the forward-backward algorithm. Thus our
algorithms also indirectly make the model learning problem more efficient.

2.1 Viterbi Algorithm

The Viterbi algorithm is used to find a maximum posterior probability state se-
quence, that is a sequence Q = (q1, . . . , qT ) maximizing P (Q|O, λ). The main
computation is to determine the highest probability along a path, accounting for
the observations and ending in a given state. While there are an exponential num-
ber of possible paths, the Viterbi algorithm uses a dynamic programming approach



Figure 1: An example of the L1 distance transform for a grid with n = 9 points
containing the point set P = {1, 3, 7}. The distance transform value at each point
is given by the height of the lower envelope, depicted as a dashed contour.

(see e.g., [8]), employing the recursive equation

δt+1(j) = bj(ot+1) max
i

(δt(i)aij) ,

where δt(i), for i = 1, 2, . . . , n, encodes the highest probability along a path which
accounts for the first t observations and ends in state si. The maximization term
takes O(n2) time, resulting in an overall time of O(Tn2) for a sequence of length
T . Computing δt for each time step is only the first pass of the Viterbi algorithm.
In a subsequent backward pass, a minimizing path is found. This takes only O(Tn)
time, so the forward computation is the dominant part of the running time.

In general a variant of the Viterbi algorithm is employed that uses negative
log probabilities rather than probabilities, such that the computation becomes
δ′t+1(j) = b′j(ot+1) + mini(δ

′

t(i) + a′

ij), where ′ is used to denote a negative log
probability. We now turn to the computation of δ′ for restricted forms of the tran-
sition costs a′

ij , where there is an underlying parameter space such that the costs
can be expressed in terms of a distance between parameter values corresponding to
the states. Let us denote such cost functions by ρ(i − j). Then,

δ′t+1(j) = b′j(ot+1) + min
i

(δ′t(i) + ρ(i − j)) . (1)

We now show how the minimization in the second term can be computed in O(n)
time rather than O(n2). The approach is based on a generalization of the distance
transform, which is defined for sets of points on a grid. Consider a grid with N
locations and a point set P on that grid. The distance transform of P specifies for
each grid location, the distance to the closest point in the set P ,

DP (j) = min
i∈P

ρ(i − j).

Clearly the distance transform can be computed in O(N 2) time by considering all
pairs of grid locations. However, it can also be computed in linear time for many
distance functions using simple algorithms (e.g., [2, 5]). These algorithms have small
constants and are fast in practice. The algorithms work for distance transforms of
d-dimensional grids, not just for the one-dimensional case that we illustrate here.

In order to compute the distance transform efficiently it is commonly expressed as,

DP (j) = min
i

(ρ(i − j) + 1(i)) ,

where 1(i) is an indicator function for the set P such that 1(i) = 0 when i ∈ P and
1(i) = ∞ otherwise. Intuitively one can think of a collection of upward facing cones,
one rooted at each grid location that is in the set P . The transform is then obtained
by taking the lower envelope (or minimum) of these cones. For concreteness consider



the one-dimensional case with the L1 distance between grid locations. In this case
the “cones” are v-shapes of slope 1 rising from the value y = 0 at each grid location
that corresponds to a point of the set P , as illustrated in Figure 1.

It is straightforward to verify that a simple two-pass algorithm correctly computes
this one-dimensional distance transform. First the vector D(j) is initialized to 1(j).
Then in the forward pass, each successive element of D(j) is set to the minimum
of its own value and one plus the value of the previous element (this is done “in
place” so that updates affect one another).

j = 1, ..., n − 1 : D(j) = min(D(j), D(j − 1) + 1).

The backward pass is analogous,

j = n − 2, ..., 0 : D(j) = min(D(j), D(j + 1) + 1).

Consider the example in Figure 1. After the initialization step the value of D is
(∞, 0,∞, 0,∞,∞,∞, 0,∞), after the forward pass it is (∞, 0, 1, 0, 1, 2, 3, 0, 1) and
after the backward pass the final answer of (1, 0, 1, 0, 1, 2, 1, 0, 1).

This computation of the distance transform does not depend on the form of the
function 1(i). This suggests a generalization of distance transforms where the indi-
cator function 1(i) is replaced with an arbitrary function,

Df (j) = min
i

(ρ(i − j) + f(i)) .

The same observation was used in [4] to efficiently compute certain tree-based cost
functions for visual recognition of multi-part objects. Intuitively, the upward-facing
cones are now rooted at height f(i) rather than at zero, and are positioned at every
grid location. The function Df is as above the lower envelope of these cones.

This generalized distance transform Df is precisely the form of the minimization
term in the computation of the Viterbi recursion δ′ in equation (1), where each
state corresponds to a grid point. The algorithm above can be used to compute
each step of the Viterbi minimization in O(n) time when ρ is the L1 norm, giving
an O(Tn) algorithm overall. This corresponds to the problem in the third row of
Table 1. The computation for the second row of the table is similar, except that
computing the distance transform for the L2 distance squared is a bit more involved
(see [5]). The distribution in the first row of the table can be handled using a linear
time algorithm for the min-filter [3].

Combinations of transforms can be formed by computing each function separately
and then taking the minimum of the results. The entries in the bottom part of
Table 1 show two such combinations. The function in the fourth row is often of
practical interest, where the probability is p of staying near the current state and
q of transitioning to any other state. The function in the last row is a so-called
“truncated quadratic”, arising commonly in robust statistics. In the experimental
section we use a similar function that is the combination of two linear components
with different slopes.

2.2 Forward-Backward Algorithm

The forward-backward algorithm is used to find the probability of the observed
sequence given the the model, P (O|λ). The computation also determines the pos-
terior probability of the states at each time, P (qt = si|O, λ). Most of the work
in the forward-backward algorithm is spent in determining the so-called forward
and backward probabilities at each step (again see [8] or any other introduction to
HMMs). The forward probabilities at a given time can be expressed as the n-vector

αt(i) = P (o1, o2, . . . , ot, qt = si|λ),



i.e., the probability of the partial observation sequence up until time t and the
state at time t, given the model. The backward probabilities βt can be expressed
analogously and are not considered here. The standard computation is to express
the vector αt recursively as

αt+1(j) = bj(ot+1)
n∑

i=1

(αt(i)aij) .

In this form it is readily apparent that computing αt+1 from αt involves O(n2)
operations, as each of the n entries in the vector involves a sum of n terms.

When the transition probabilities are based just on the differences between the
underlying coordinates corresponding to the states, aij = h(j − i), the recursive
computation of α becomes

αt+1(j) = bj(ot+1)

n∑

i=1

(αt(i)h(j − i)) .

The summation term is simply the convolution of αt with h. In general, this discrete
convolution can be computed in O(n log n) time using the FFT. While this is a
simple observation, it enables efficient calculation of the forward and backward
probabilities for problems where the states are embedded in a grid.

In certain specific cases convolution can be computed in linear time. One case
of particular interest is the so-called box sum, in which the convolution kernel is a
constant function within a region. That is, h(j) = k over some interval and h(j) = 0
outside that interval. A Gaussian can be well approximated by convolution of just
a few such box filters [10], and thus it is possible to approximately compute the
functions in the first and second rows of Figure 1 in O(Tn) time. Similarly to the
Viterbi case, functions can be created from combinations of box-sums. In this case
a weighted sum of the individual functions is used rather than their minimum.

3 Coin-Tossing Models and Web Usage Analysis

We now turn to the application mentioned in the introduction: using a coin-tossing
model with a one-dimensional embedding of states to estimate the download prob-
ability of items at a Web site. Our data comes from the Internet Archive site
(www.archive.org), which offers digital text, movie, and audio files. Each item on
the site has a separate description page, which contains the option to download it;
this is similar to the paper description pages on CiteSeer or the e-print arXiv and
to the item description pages at online retailers (with the option to purchase). On a
site of this type, the probability that a user chooses to acquire an item, conditioned
on having visited the description page, can be viewed as a measure of interest [1].

This ratio of acquisitions to visits is particularly useful as a way of tracking the
changes in user interest in an item. Suppose the item is featured prominently on
the site; or an active off-site link to the item description drives a new sub-population
of users to it; or a technical problem makes it impossible to obtain the item — these
are all discrete events that can have a sudden, significant effect on the fraction of
users who download the item. By identifying such discrete changes, we can discover
the most significant events, both on the site and on the Web at large, that have
affected user interest in each item. Such a history of events can be useful to site
administrators, as feedback to the users of the site, and for researchers.

This type of change-detection fits naturally into the framework of HMMs. For a
fixed item, each observation corresponds to a user’s visit to the item description,
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Figure 2: Estimate of underlying download bias; best state sequence for models
with step sizes of .1 (9 states) on the left and .01 (81 states) on the right.

and there are two observable symbols V = {1, 0}, corresponding to the decision
to download or not. We assume a model in which there is a hidden coin of some
unknown bias that is flipped when the user visits the description and whose outcome
determines the download decision. Thus, each state si corresponds to a discretized
value pi of the underlying bias parameter. The natural observation cost function
b′i(k) is simply the negative log of the probability p for a head and (1− p) for a tail.

The points at which state transitions occur in the optimal state sequence thus
become candidates for discrete changes in user interest. The form of the state tran-
sition costs is based on our assumptions about the nature of these changes. As
indicated above, they often result from the introduction of a new sub-population
with different interests or expectations; thus, it is natural to expect that the tran-
sition cost should rise monotonically as the change in bias increases, but that even
large changes should happen with some regularity.

We quantize the underlying bias parameter values equally, such that |pi−pj | ∝ |i−j|
and use a cost function of the form

a′

ij = min (k1|i − j|, k2|i − j| + k3) ,

where the ki are positive constants and k1 > k2. This two-slope linear model is
monotone increasing but once the change in bias becomes large enough the rate of
increase is small. The model prefers constant or small changes in bias but allows
for arbitrarily large changes, similarly to the “truncated model” common in robust
statistics.

Figure 2 shows the best state sequence obtained with the Viterbi algorithm under
this model, using two different discretizations of the parameter space, for an input
sequence of 11, 159 visits from August 2002 to April 2003 to the description page
for a particular video in the Internet Archive. On the left is a 9-state model with
probabilities ranging from .1 to .9 in steps of size .1. On the right is an 81-state
model with the same range of .1 to .9 but where the steps are of size .01. The x-axis
shows the visit time (UTC in billions of seconds since the epoch) and the y-axis
shows the bias associated with the state in the optimal sequence at that time.

We begin by observing that both models capture a number of discrete changes
in download behavior. These changes correspond to genuine external events. In
particular, both models capture the long-term drop and rebound in bias which cor-
responds to the time period where the item was highlighted on a top-level page,
as well as the two rightmost short downward spikes which correspond to technical
problems that made downloads temporarily impossible. Even though these latter



failures were relatively short-lived, lasting a few hours out of the several-month
range, they are detected easily by the stochastic model; in contrast, temporal win-
dowing techniques miss such short events.

The two plots, however, exhibit some subtle but important differences that illustrate
the qualitatively greater power we obtain from a larger state set. In particular,
the 81-state model has four short downward spikes rather than three in the time
interval from 1.045 to 1.05. The latter two are the technical failures identified by
both models, but the first two correspond to two distinct off-site referring pages each
of which drove a significant amount of low-interest user traffic to the item. While
the 81-state model was able to resolve these as separate events, the 9-state model
blurs them into an artificial period of medium bias, followed by a downward spike
to the lowest possible state (i.e. the same state it used for the technical failures).
Finally, the 81-state model discovers a gradual decline in the download rate near
the end of the plot that is not visible when there are fewer states.

We see that a model with a larger state set is able to pick up the effects of different
types of events — both on-site and off-site highlighting of the item, as well as tech-
nical problems — and that these events often result in sudden, discrete changes.
Moreover, it appears that beyond a certain point, the set of significant events re-
mains roughly fixed even as the resolution in the state set increases. While we do
not show the result here, an 801-state model with step size .001 produces a plot
that is qualitatively indistinguishable from the 81 state model with step size .01 —
only the y-values provide more detail with the smaller step size.
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