A Fast Multi-Resolution Method for Detection of
Significant Spatial Disease Clusters

Daniel B. Nelll Andrew W. Moore
Department of Computer Science Department of Computer Science
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
neill @s. cnu. edu awn@s. cnu. edu
Abstract

Givenan N x N grid of squares, where each square has a count and an un-
derlying population, our goal is to find the square region with the highest
density, and to calculate its significance by randomization. Any density
measure D, dependent on the total count and total population of a re-
gion, can be used. For example, if each count represents the number
of disease cases occurring in that square, we can use Kulldorff’s spatial
scan statistic Dk to find the most significant spatial disease cluster. A
naive approach to finding the maximum density region requires O(N%)
time, and is generally computationally infeasible. We present a novel
algorithm which partitions the grid into overlapping regions, bounds the
maximum score of subregions contained in each region, and prunes re-
gions which cannot contain the maximum density region. For sufficiently
dense regions, this method finds the maximum density region in optimal
O(N?) time, in practice resulting in significant (10-200x) speedups.

1 Introduction

This paper develops fast methods for detection of spatial overdensities: discovery of spa-
tial regions with high scores according to some density measure, and statistical significance
testing in order to determine whether these high-density regions can reasonably have oc-
curred by chance. A major application is in identifying clusters of disease cases, for pur-
poses ranging from detection of bioterrorism (ex. anthrax) to environmental risk factors
for diseases such as childhood leukemia ([1]-[3]). [4] discusses many other applications,
including astronomy (identifying star clusters), reconnaissance, and medical imaging.

Consider the case in which counts are aggregated to a uniform 2-d grid. Assume an N x N
grid of squares G, where each square sjj € G is associated with a count ¢;j and an underlying
population p;j. For example, a square’s count may be the number of disease cases in that
geographical region in a given time period, while its population may be the total number of
people “at-risk” for the disease. Our goal is to find the square region S* C G with the highest
density according to a density measure D: S* = argmaxsD(S). We use the abbreviations
mdr for the “maximum density region” S*, and mrd for the “maximum region density”
D(S*), throughout. The density measure D must be an increasing function of the total
count of the region, C(S) = 3 s¢ij, and a decreasing function of the total population of the
region, P(S) = Y spij. In the case of a uniform underlying population, P(S) O k2, where k
is the size of region S. But we focus on the more interesting case: non-uniform populations.

The problem of finding significant spatial overdensities is distinct from that solved by grid-
based hierarchical methods such as CLIQUE [5], MAFIA [6], and STING [7], which also
look for “dense clusters.” There are three main differences:

1. Our method is applicable to any density measure D, while the other algorithms are
specific to the “standard” density measure D1(S) = %. The D1 measure is the

number of points per unit population, for example this corresponds to the region
with the highest observed disease rate. Unlike many other density measures, Dy is
monotonic: if a region S with density d is partitioned into any set of disjoint sub-
regions, at least one subregion will have density d’ > d. Thus it is not particularly
useful to find the “region” with maximum D1, since this will be the single square
with highest g'—IJJ Instead, the other algorithms search for maximally sized regions

with D4 greater than some threshold, relying on the monotonicity of D1 by first
finding dense units (1 x 1 squares), then merging adjacent units in bottom-up fash-
ion. For a non-monotonic measure such as Kulldorff’s, it is possible to have a large
dense region where none of its subregions are themselves dense, so bottom-up can
fail. Here, we will optimize with respect to arbitrary non-monotonic density mea-
sures, and thus use a different approach from CLIQUE, MAFIA, or STING.

2. Our method deals with non-uniform underlying populations: this is particularly
important for real-world epidemiological applications, in which an overdensity of
disease cases is more significant if the underlying population is large.

3. Our goal is not only to find the highest scoring region, but also to test whether that
region is a true cluster or if it is likely to have occurred by chance.

1.1 Thespatial scan statistic

A non-monotonic density measure which is of great interest to epidemiologists is Kull-
dorff’s spatial scan statistic [8], which we denote by Dk. This assumes that counts c;; are
generated by an inhomogeneous Poisson process with mean qp;j, where g is the underlying
“disease rate” (or expected value of the D1 density). We then calculate the log of the likeli-
hood ratio of two possibilities: that the disease rate q is higher in the region than outside the
region, and that the disease rate is identical inside and outside the region. For a region with
count C and population P, in a grid with total count Ciy and population P, we can cal-
culate D = Clog § + (Crot — C) log %‘3:,3 — Crotlog %t—g:, if § > %‘—g, and 0 otherwise. [8]
proved that the spatial scan statistic is individually most powerful for finding a significant
region of elevated disease rate: it is more likely to detect the overdensity than any other test
statistic. Note, however, that our algorithm is general enough to use any density measure,
and in some cases we may wish to use measures other than Kulldorff’s. For instance, if
we have some idea of the size of the maximum density region, we can use the D, measure,

D (S) = %, 0 < r < 1, with larger r corresponding to tests for smaller clusters.
Once we have found the maximum density region (mdr) of grid G according to our density
measure, we must still determine the statistical significance of this region. Since the exact
distribution of the test statistic is only known in special cases (such as D1 density with a
uniform underlying population), in general we must perform Monte Carlo simulation for
our hypothesis test. To do so, we run a large number R of random replications, where
a replica has the same underlying populations p;jj as G, but assumes a uniform disease

rate Qrep = %‘;‘Eg)) for all squares. For each replica G’, we first generate all counts c;;
randomly from an inhomogeneous Poisson distribution with mean greppij, then compute
the maximum region density (mrd) of G’ and compare this to mrd(G). The number of
replicas G’ with mrd(G’) > mrd(G), divided by the total number of replications R, gives
us the p-value for our maximum density region. If this p-value is less than .05, we can

conclude that the discovered region is statistically significant (unlikely to have occurred

by chance) and is thus a “spatial overdensity.” If the test fails, we have still discovered the
maximum density region of G, but there is not sufficient evidence that this is an overdensity.

1.2 Thenaive approach

The simplest method of finding the maX|mum density region is to co fute the density of
all square regions of sizes k = kmin...N.1 Since there are (N —k+ 1) regions of size k,
there are a total of O(N3) regions to examine. We can compute the densny of any region
Sin O(1), by first finding the count C(S) and population P(S), then applying our density
measure D(C,P).? This allows us to compute the mdr of an N x N grid G in O(N?) time.
However, significance testing by Monte Carlo replication also requires us to find the mrd for
each replica G, and compare this to mrd(G). Since calculation of the mrd takes O(N3) time
for each replica, the total complexity is O(RN3), and R is typically large (we assume R =
1000). Several simple tricks may be used to speed up this procedure for cases where there
is no significant spatial overdensity. First, we can stop examining a replica G’ immediately
if we find a region with density greater than mrd(G). Second, we can use the Central Limit
Theorem to halt our Monte Carlo testing early if, after a number of replications R’ < R, we
can conclude with high confidence that the region is not significant. For cases where there
is a significant spatial overdensity, the naive approach is still extremely computationally
expensive, and this motivates our search for a faster algorithm.

2 Overlap-multires partitioning

Since the problem of detection of spatial overdensities is closely related to problems such
as kernel density estimation and kernel regression, this suggests that multi-resolution par-
titioning techniques such as kd-trees [9] and mrkd-trees [10] may be useful in speeding up
our search. The main difference of our problem from kernel density estimation, however,
is that we are only interested in the maximum density region; thus, we do not necessarily
need to build a space-partitioning tree at all resolutions. Also, the assumption that counts
are aggregated to a uniform grid simplifies and speeds up partitioning, eliminating the need
for a computationally expensive instance-based approach. These observations suggest a
top-down multi-resolution partitioning approach, in which we search first at coarse resolu-
tions (large regions), then at successively finer resolutions as necessary. One option would
be to use a “quadtree” [11], a hierarchical data structure in which each region is recursively
partitioned into its top left, top right, bottom left, and bottom right quarters. However, a
simple partitioning approach fails because of the non-monotonicity of our density measure:
a dense region may be split into two or more separate subregions, none of which is as dense
as the original region. This problem can be prevented by a partitioning approach in which
adjacent regions partially overlap, an approach we call “overlap-multires partitioning.”

To explain how this method works, we first define some notation. We denote a region S by
an ordered triple (x,y,k), where (x,y) is the upper left corner of the region and k is its size.
Next, we define the w-children of a region S = (x,y,k) as the four overlapping subregions
of size k — w corresponding to the top left, top right, bottom left, and bottom right corners
of S: (X,y,k —), (Xx+w,y,k—w), (X,y+w,k—w), and (X + w,y + w,k — w). Next, we
define a region as “even” if its size is 2K for some k > 2, and “odd” if its size is 3 x 2X for
some k > 0. We define the “gridded children” (g-children) of an even region S = (x,y,k)

as its w-children for w= ';‘1. Thus the four g-children of an even region are odd, and each

overlaps % with the directly adjacent child regions. Similarly, we define the g-children of
an odd region S = (x,Y,k) as its w-children for 0)— . Thus the four g-children of an odd
region are even, and each overlaps with the dlrectly adjacent child regions. Note that

1We assume that aregion must have size at least kmin to be signifi cant: here knin = 3.
2Anold trick allows us to compute the count of any k x k regionin O(1): wefi rst form amatrix of
the cumulative counts, then compute each region’s count by adding at most four cumulative counts.

even though a region has four g-children, and each of its g-children has four g-children,
it has only nine (not 16) distinct grandchildren, several of which are the child of multiple
regions. Figure 1 shows the first two levels of such a tree.

Figure 1. The first two levels of the overlap-
mutires tree. Each node represents a gridded re-
gion (denoted by a thick square) of the entire
dataset (thin square and dots).

Next, we assume that the size of the entire grid is a power of two: thus the entire grid
G = (0,0,N) is an even region. We define the set of “gridded” regions of G as G and all of
its “gridded descendents” (its g-children, g-grandchildren, etc.). Our algorithm focuses its
search on the set of gridded regions, only searching non-gridded regions when necessary.
This technique is useful because the total number of gridded regions is O(N?), as in the
simple quadtree partitioning method. This implies that, if only gridded regions need to be
searched, our total time to find the mdr of a grid is O(N?). Since it takes Q(N?) time to
generate the grid, this time bound is optimal.

2.1 Top-down pruning

So when can we search only gridded regions, or alternatively, when does a given non-
gridded region need to be searched? Our basic method is branch-and-bound: we perform
a top-down search, and speed up this search by pruning regions which cannot possibly
contain the mdr. Our first step is to derive an upper bound Dnux(S,k) on the density of
subregions of minimum size k contained in a given region S (Section 2.2). Then we can
compare Dyax(S, k) to the density D(S*) of the best region found so far: if Dpyux(S, k) <
D(S*), we know that no subregion of S with size k or more can be the mdr.

We can use this information for two types of pruning. First, if Dyax(S,kmin) < D(S*), we
know that no subregion of S can be optimal; we can prune the region completely, and not
search its (gridded or non-gridded) children. Second, we can show that (for 0 < k < n) any
region of size 2K+ 1 or less is contained entirely in an odd gridded region of size % x 2K,
Thus, if Drax(G, 2" +2) < D(S*) for the entire grid G, any optimal non-gridded region
must be contained in an odd gridded region. Similarly, if Dyax(S, 25+ 2) < D(S*) for an
odd gridded region S of size 3 x 2, any optimal non-gridded subregion of S must be within
an odd gridded subregion of S. Thus we can search only gridded regions if two conditions
hold: 1) no subregion of G of size 2"~1 + 2 or more can be optimal, and 2) for each odd
gridded region of size 3 x 2K, no subregion of size 2K+ 2 or more can be optimal.

2.2 Bounding subregion density

To bound the maximum subregion density Dmax(S,K), we must find the highest possible
score D(S') of a subregion S’ C S of size k or more. Let C =C(S), P=P(S), and K =
size(S). We assume that these are known, as well as lower and upper bounds [dmin, dmax]
on the Dy density of subregions of S. Let c = C(S’) and p = P(S'); these are presently
unknown. We can prove that, if D(S’) > D(S), the maximum value of D(S’) occurs when
S has the maximum allowable D; density diax, and S— S’ has the minimum allowable D,
density dnin: this gives us pdiax + (P — p)dmin = C. Thus p = % and ¢ = dpaxp =

%. Then computing D(c, p) gives us a guaranteed upper bound on Dyyex(S, k).

We can place tighter bounds on Dmax(S, K) if we also have a lower bound ppin(S, k) on the
population of a size k subregion S’ C S: in this case, if the value calculated for p in the

equation above is less than ppin, we know that D(c’, pmin), where ¢’ = C — (P — Prin)drin,
is a tighter upper bound for Dyay. We can bound ppin in several ways. First, if we know
the minimum population psmin of a single square s € S, then ppin > kngmm. Second,
if we know the maximum population psmax Of a single square s € S, then ppin > P —
(K2 —k?)psmax- At the beginning of our algorithm, we calculate psmax(S) = max pjj and
Psmin(S) = minpjj (where sjj € S) for each gridded region S. This calculation can be
done recursively (bottom-up) in O(N?). The resulting population statistics are used for the
original grid and for all replicas. For non-gridded regions, we use the population statistics
of the region’s gridded parent (either an odd gridded region or the entire grid G); these
bounds will be looser for the child region than for the parent, but are still correct. We
also initially calculate dmax and dpin. This is done simply by finding the global maximum

and minimum values of the Dy density: dmax = maxgg—gg (where S’ C G and size(S') =
Kmin), and dmin = min S_.JJ (where sjj € G).2 Alternatively, we could compute diax and dpin

recursively (bottom-up) for each gridded region S, but in practice we find that the global
values are sufficient for good performance on most test cases.

2.3 Thealgorithm

Our algorithm, based on the overlap-multires partitioning scheme above, is a top-down,
best-first search of the set of gridded regions, followed by a top-down, best-first search
of any non-gridded regions as necessary. We use priority queues (q1,q2) for our search:
each step of the algorithm takes the “best” (i.e. highest density) region from a queue,
examines it, and (if necessary) adds its children to queues. The w-children and g-children
of aregion S are defined above; note that the 1-children of S are its w-children with w = 1.
We also assume that regions are “marked” once added to a queue, so that a region will
not be searched more than once. Finally, we use the rules and density bounds derived
above to speed up our search, by pruning subregions when Dax(S, k) < D(S*). The basic
pseudocode outline of our method is as follows:

Add G to ql.
IT D_max(G,N/2+2)>mrd, add 1-children(G) to g2 with k1=N/2+2.
While gl not empty:

Get best region S from ql.

If D(S)>mrd, set mdr=S and mrd=D(S).

If D_max(S,k_min)>mrd, add g-children(S) to ql.

I size(S)=3(2"k) and D_max(S,2 k+2)>mrd, add 1-children(S) to g2 with k1=2"k+2.
While g2 not empty:

Get best region S and value k1(S) from g2.

If D(S)>mrd, set mdr=S and mrd=D(S).

If D_max(S,k1(S))>mrd, add 1-children(S) to g2 with same k1.
These steps are first performed for the original grid, allowing us to calculate its mdr and
mrd. We then perform these steps to calculate the mrd of each replica; however, several
techniques allow us to reduce the amount of computation necessary for a replica. First, we
can stop examining a replica G’ immediately if we find a region with density greater than
mrd(G). This is especially useful in cases where there is no significant spatial overdensity
in G. Second, we can use mrd(G) for pruning our search on a replica G: if Dyux(S,k) <
mrd(G) for some S C G’, we know that no subregion of S of size k or more can have a
greater density than the mdr of the original grid, and thus we do not need to examine any of
those subregions. This is especially useful where there is a significant spatial overdensity
in G: a high mrd will allow large amounts of pruning on the replica grids.

3 Improvingthealgorithm

The exact version of the algorithm uses conservative estimates of the D1 densities of S’ and
S — S (dmax and dmin respectively), and a loose lower bound on the population of S, to

3We can use the tighter bound for dmax Since we are using it to bound the density of a square
region S of size at least kyin; We cannot use the tighter bound for dpi, since S— S is not square.

calculate Dmax(S, k). This results in a loose upper bound on Dpax Which is guaranteed to be
correct, but allows little pruning to be done. We can derive tighter bounds on Dyyax in two
ways: by using a closer approximation to the D density of S —$’, and by using a tighter
lower bound on the population of S’. These improvements are discussed below.

3.1 Theouter density approximation

To derive tighter bounds on the maximum density of a subregion S’ contained in a given
region S, we first note that (under both the null hypothesis and the alternative hypothesis)
we assume that at most one disease cluster Sqc exists, and that the disease rate q is expected
to be uniform outside Sqc (or uniform everywhere, if no disease cluster exists). Thus, if
Sqc is contained entirely in the region under consideration S, we would expect that the
maximum density subregion S’ of S is S, and that the disease rate of S— §’ is equal to the

disease rate outside S: E [C C} = f{;‘ 5 = dout- Assuming that the D; density of S — S'is
equal to its expected value doy, We obtain the equation pdmax + (P — p)douwt = C. Solving

for p, we find p = =% Then Dyax(S, k) = D(c, p), where ¢ = dyaxp.

The problem with thls approach is that we have not compensated for the variance in den-
sities: our calculated value of Dy is an upper bound for the maximum subregion density
D(S') only in the most approximate probabilistic sense. We would expect the D1 density of
S— S’ to be less than its expected value half the time, and thus we would expect D(S') to be
less than Dx at least half the time; in practice, our bound will be correct more often, since
we are still using a conservative approximation of the D; density of S’. Note also that we
expect to underestimate Dy if the disease cluster Syc is not contained entirely in S: this is
acceptable (and desirable) since a region not containing Syc does not need to be expanded.

We can improve the correctness of our probabilistic bound by also considering the vari-

ance of Q — %‘;‘jc. Assuming that all counts outside Sy are generated by a inho-

mogeneous P0|sson distribution with parameter qp;;, we obtain: o2 {c c Ctot_c:| =

P Ra-P

Po(q(P— Po(q(Rat—P))] — _ Plot— .
o [(p(,p P _ <H(m,°tp))} = o5+ AP = (Pﬂ(p)z"%pzp). Since the actual value of

the parameter q is not known, we use a conservative empirical estimate: q = Hft“’_‘ 5 From

this, we obtain o {—g — Ra= P} = (pr)c(tﬁ’{wp)- Then we can compute p by solving

PAmax + (P — p) (dout —bo) = C, and obtain ¢ = dmaxp and Dmax = D(c, p) as before.

By adjusting our approximation of the minimum density in this manner, we compute a
higher score Day, reducing the likelihood that we will underestimate the maximum subre-
gion density and prune a region that should not necessarily be pruned. Given a constant b,
the D1 density of S— S’ will be greater than doyx — bo with probability P(Z < b), where Z
is chosen randomly from the unit normal. For b = 2, there is an 98% chance that we will
underestimate D1 (S —S'), giving a guaranteed correct upper bound for the maximum subre-
gion density. In practice, the maximum subregion density will be lower than our computed
value of Dy more often, since our estimates for dnyay and g are conservative. Thus, though
our algorithm is approximate, it is very likely to converge to the globally optimal mdr. In
fact, our experiments demonstrate that b = 1 is sufficient to obtain the correct region with
over 90% probability, approaching 100% for sufficiently dense regions.

3.2 Cached population statistics

A final step in making the algorithm tractable is to cache certain statistics about the mini-
mum populations of subsquares of gridded regions. This is only performed once: it need
not be repeated for each replica (since populations need not be randomized). Although
there is no room to describe it, we have empirically shown it to give an important acceler-
ation if populations are highly non-uniform. The results below make use of this.

4 Resaults

We first describe results with artificially generated grids and then real-world case data. An
artificial grid is generated from a set of parameters (N, k, W, o, ¢’, g”). The grid generator
first creates an N x N grid, and randomly selects a k x k “test region.” Then the population
of each square is chosen randomly from a normal distribution with mean p and standard
deviation o (populations less than zero are set to zero). Finally, the count of each square is
chosen randomly from a Poisson distribution with parameter qp;;, where q = g’ inside the
test region and g = g outside the test region.

We tested three different adjustments for density variance (b = 0,1,2). The approximate
algorithm was tested for grids of size N = 512; test region sizes of k = 16 and k = 4 were
used, and the disease rate g was set to .002 inside the test region and .001 outside the
test region. We used three different population distributions for testing: the “standard”
distribution (u = 10%, o = 103), and two types of “highly varying” populations. For the
“city” distribution, we randomly selected a “city region” with size 16: square populations
were generated with u = 107 and o = 108 inside the city, and p = 10% and o = 103 outside
the city. For the “high-o” distribution, we generated all square populations with p = 10%
and 0 = 5 x 103, We first compared the performance of each variant of the algorithm to
the naive approach for the three test cases; see Table 1 for results. For large test regions
(k = 16), all variants of the algorithm had runtimes of ~20 minutes, as compared to 44
hours for the naive approach, a speedup of 122-155x. For small test regions (k = 4), we
observed that performance generally decreased with increasing b: the algorithm achieved
average speedups of 133x for b =0, 61x forb =1, and 18x for b = 2.

Next, we tested accuracy by generating 50 artificial grids for each population distribution,
and computing the percentage of test grids on which the algorithm was able to find the
correct mdr (see Table 2). For the large test region (k = 16), all variants were able to find the
correct mdr with high (97-100%) accuracy. For the small test region, accuracy improved
significantly with increasing b: the non-variance adjusted version (b = 0) achieved only
45% accuracy, while the variance adjusted versions (b = 1 and b = 2) achieved 89% and
99% accuracy respectively. These results demonstrate that the approximate algorithm (with
variance adjustment and cached population statistics) is able to achieve high performance
and accuracy even for very small test regions and highly non-uniform populations.

Finally, we measured the performance of the approximate algorithm on a grid generated
from real-world data. We used a database of (anonymized) Emergency Department data
collected from Western Pennsylvania hospitals in the period 1999-2002. This dataset con-
tained a total of 630,000 records, each representing a single ED visit and giving the latitude
and longitude of the patient’s home location to the nearest .005 degrees (~ % mile, a suffi-
ciently low resolution to ensure anonymity). For each record, the latitude L and longitude

| were converted to a grid square sjj by i = Lfobg"” and j = 'fo'gg"; this created a 512 x 512
grid. We tested for spatial clustering of “recent” disease cases: the “count” of each square
was the number of ED visits in that square in the last two months, and the “population” of
that square was the total number of ED visits in that square. See Figure 2 for a picture of
this dataset, including the highest scoring region. We tested six variants of the approximate
algorithm on the ED dataset; the presence/absence of cached population statistics did not
significantly affect the performance or accuracy for this test, so we focus on the variation
in b. All three variants (b = 0,1,2), as well as the naive algorithm, found the maximum
density region (of size 101) and found it statistically significant (p-value 0/1000). The ma-
jor difference, of course, was in runtime and number of regions searched (see Table 3).
The naive algorithm took 2.7 days to find the mdr and perform 1000 Monte Carlo repli-
cations, while each of the variants of the approximate algorithm performed the same task
in ~2 hours or less. The approximate algorithm took 19 minutes (a speedup of 209x) for
b = 0, 47 minutes (a speedup of 85x) for b = 1, and 126 minutes (a speedup of 31x) for
b = 2. Thus we can see that all three variants find the correct region in much less time than

. Figure 2. The left picture shows the
P s “population” distribution within West-
ern PA and the right picture shows the
“counts’ distribution. The winning re-

2

r

O b gion is shown as a square.
F »
- .'.:-ﬁ '- : y N
Table 1: Performance of algorithm, N = 512 .
method et time (orig+1000repy) speedup Table 2: Accuracy of algorithm
naive 2:37+43:36:40 x1
i al method test accuracy accuracy
= = (k= 16) (k=4)
b=0 sd, k=16 0:42+16: 40 X151 — .
b=1 Sd k=16 0:43116:20 X154 E: g sag?yard 3302 2222
b=2 std, k=16 0:41+17:00 X148 =0 Hoho L s
o w1 oare 1w SR
b=2 Sd, k=4 0:4211:13.00 x36 b=1 city 100% 88%
= - b=1 high-0 100% 90%
=0 city, k= 16 0:42+16:30 X153 — =
b=1 iy, k=16 046+ 20:40 X122 E: g S‘agdard 183;’ gng
b=2 City, k=16 0411 18:40 135 = city J 0
b=2 high-o 100% 100%
b=0 cty, k=4 0:43+24:30 x104
b=1 city, k=4 0:44+2:11:00 x20
b=2 city, k=4 0:47+7:06:50 x6.1 Table3: Emergency Dept. dataset
b=0 high-o, k=16 0:41+17:00 148))
b=1 h:gh-g k=16 0: 411 16:40 ST method _ time (orig+1000reps) _ speedup
— - L . . naive 4:05+65:50:00 x1
b=2 high-o, k= 16 0:41+17:00 X148 b=0 3011436 =505
b=0 high-o, k=4 0:44+17:15 X146 b=1 4:22+42:20 X85
b=1 high-o, k=4 0:45+34:10 X75 b=2 4:36+2:01:12 x31
b=2 high-o, k=4 1:08+3:20:00 x13

the naive approach. This is very important for applications such as real-time detection of
disease outbreaks: if a system is able to detect an outbreak in minutes rather than days,
preventive measures or treatments can be administered earlier, possibly saving many lives.

Thus we have presented a fast overlap-multires partitioning algorithm for detection of
spatial overdensities, and demonstrated that this method results in significant (10-200x)
speedups on real and artificially generated datasets. We are currently applying this algo-
rithm to national-level hospital and pharmacy data, attempting to detect statistically signif-
icant indications of a disease outbreak based on changes in the spatial clustering of disease
cases. Application of a fast partitioning method using the techniques presented here may
allow us to achieve the difficult goal of automatic real-time detection of disease outbreaks.

References

[1] S. Openshaw, et a. 1988. Investigation of leukemia clusters by use of a geographical analysis machine. Lancet 1, 272-273.
[2] L. A. Waller, et al. 1994. Spatial analysisto detect disease clusters. In N. Lange, ed. Case Studies in Biometry. Wiley, 3-23.
[3] M. Kulldorff and N. Nagarwalla. 1995. Spatial disease clusters: detection and inference. Statistics in Medicine 14, 799-810.

[4] M. Kulldorff. 1999. Spatial scan statistics: models, calculations, and applications. In Glaz and Balakrishnan, eds. Scan
Statistics and Applications. Birkhauser: Boston, 303-322.

[5] R. Agrawal, et al. 1998. Automatic subspace clustering of high dimensional data for data mining applications. Proc. ACM-
SIGMOD Intl. Conference on Management of Data, 94-105.

[6] S. Goail, et a. 1999. MAFIA: effi cient and scalable subspace clustering for very large data sets. Northwestern University,
Technical Report No. CPDC-TR-9906-010.

[7] W. Wang, et al. 1997. STING: a statistical information grid approach to spatial data mining. Proc. 23rd Conference on Very
Large Databases, 186-195.

[8] M. Kulldorff. 1997. A spatial scan statistic. Communications in Statistics: Theory and Methods 26(6), 1481-1496.
[9] F. P. Preparataand M. |. Shamos. 1985. Computational Geometry: An Introduction. Springer-Verlag: New York.

[10] K. Deng and A. W. Moore. 1995. Multiresolution instance-based learning. Proc. 12th Intl. Joint Conference on Atrtificial
Intelligence, 1233-1239.

[11] H. Samet. 1990. The Design and Analysis of Spatial Data Structures. Addison-Wesley: Reading.

