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Abstract

Spike timing plasticity (STDP) is a special form of synaptic plasticity
where the relative timing of post- and presynaptic activity determines the
change of the synaptic weight. On the postsynaptic side, active back-
propagating spikes in dendrites seem to play a crucial role in the induc-
tion of spike timing dependent plasticity. We argue that postsynaptically
the temporal change of the membrane potential determines the weight
change. Coming from the presynaptic side induction of STDP is closely
related to the activation of NMDA channels. Therefore, we will calculate
analytically the change of the synaptic weight by correlating the deriva-
tive of the membrane potential with the activity of the NMDA channel.
Thus, for this calculation we utilise biophysical variables of the physi-
ological cell. The final result shows a weight change curve which con-
forms with measurements from biology. The positive part of the weight
change curve is determined by the NMDA activation. The negative part
of the weight change curve is determined by the membrane potential
change. Therefore, the weight change curve should change its shape de-
pending on the distance from the soma of the postsynaptic cell. We find
temporally asymmetric weight change close to the soma and temporally
symmetric weight change in the distal dendrite.

1 Introduction

Donald Hebb [1] postulated half a century ago that the change of synaptic strength depends
on the correlation of pre- and postsynaptic activity: cells which fire together wire together.
Here we want to concentrate on a special form of correlation based learning, namely, spike
timing dependent plasticity (STDP, [2, 3]). STDP is asymmetrical in time: Weights grow
if the pre-synaptic event precedes the postsynaptic event. This phenomenon is called long-
term potentiation (LTP). Weights shrink when the temporal order is reversed. This is called
long-term depression (LTD).

Correlations between pre- and postsynaptic activity can take place at different locations
of the cell. Here we will focus on the dendrite of the cell (see Fig. 1). The dendrite has
attracted interest recently because of its ability to propagate spikes back from the soma



of the cell into its distal regions. Such spikes are called backpropagating spikes. The
transmissionis active which guarantees that the spikes can reach even the distal regions of
the dendrite [4]. Backpropagating spikes have been suggested to be the driving force for
STDP in the dendrite [5]. On the presynaptic side the main contribution to STDP comes
from Ca2+ flow through the NMDA channels [6].

The goal of this study is to derive an analytical solution for STDP on the basis of the
biophysical properties of the NMDA channel and the cell membrane. We will show that
mainly the timing of the backpropagating spike determines the shape of the learning curve.
With fast decaying backpropagating spikes we obtain STDP while with slow decaying
backpropagating spikes we approximate temporally symmetric Hebbian learning.
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Figure 1: Schematic diagram of the model setup. The inset shows the time course of an
NMDA response as modelled by Eq. 2.

2 The Model

The goal is to define a weight change rule which correlates the dynamics of an NMDA
channel with a variable which is linked to the dynamics of a backpropagating spike. The
precise biophysical mechanisms of STDP are still to a large degree unresolved. It is, how-
ever, known that high levels ofCa2+ concentration resulting fromCa2+ influx mainly
through NMDA-channels will lead to LTP, while lower levels will lead to LTD. Several
biophysically more realistic models for STDP were recently designed which rely on this
mechanisms [7, 8, 9]. Recent physiological results (reviewed in detail in [10]), however
suggest that not only theCa2+ concentration but maybe more importantly thechange of
theCa2+ concentration determines if LTP or LTD is observed. This clearly suggests that
a differential term should be included in the learning rule, when trying to model STDP.
On theoretical grounds such a suggestion has also been made by several authors [11] who
discussed that the abstract STDP models [12] are related to the much older model class of
differential Hebbian learning rules [13]. In our model we assume that theCa2+ concen-
tration and the membrane potential are highly correlated. Consequently, our learning rule
utilises the derivative of the membrane potential for the postsynaptic activity.

After having identified the postsynaptic part of the weight change rule we have to define
the presynaptic part. This shall be the conductance function of the NMDA channel [6].



The conventional membrane equation reads:

C
dv(t)
dt

= ρ g(t)[E − v(t)] + iBP (t) +
Vrest − v(t)

R
, (1)

wherev is the membrane potential,ρ the synaptic weight of the NMDA-channel andg, E
are its conductance and equilibrium potential, respectively. The current, which a BP-spike
elicits, is given byiBP and the last term represents the passive repolarisation property
of the membrane towards its resting potentialVrest = −70 mV . We set the membrane
capacitanceC = 50 pF and the membrane resistance toR = 100 MΩ. E is set to zero.
The NMDA channel has the following equation:

g(t) = ḡ
e−b1t − e−a1t

[a1 − b1][1 + κe−γV (t)]
(2)

For simpler notation, in general we use inverse time-constantsa1 = τ−1
a , b1 = τ−1

b , etc. In
addition, the terma1 − b1 in the denominator is required for later easier integration in the
Laplace domain. Thus, we adjust for this by definingḡ = 12 mS/ms which represents the
peak conductance (4nS) multiplied byb1−a1. The other parameters were:a1 = 3.0/ms,
b1 = 0.025/ms, γ = 0.06/mV . Since we will not vary theMg2+ concentration we have
already abbreviated:κ = η[Mg2+], η = 0.33/mM , [Mg2+] = 1 mM [14].

The synaptic weight of the NMDA channel is changed by correlating the conductance of
this NMDA channel with the change (derivative) of the membrane potential:

d

dt
ρ = g(t)v′(t) (3)

To describe the weight change, we wish to solve:

∆ρ(T ) =
∫ ∞

0

g(T + τ)v′(τ)dτ, (4)

whereT is the temporal shift between the presynaptic activity and the postsynaptic activ-
ity. The shift T > 0 means that the backpropagating spike follows after the trigger of
the NMDA channel. The shiftT < 0 means that the temporal sequence of the pre- and
postsynaptic events is reversed.

To solve Eq. 4 we have to simplify it, however, without loosing biophysical realism. In
this paper we are interested in different shapes of backpropagating spikes. The underly-
ing mechanisms which establish backpropagating spikes will not be addressed here. The
backpropagating spike shall be simply modelled as a potential change in the dendrite and
its shape is determined by its amplitude, its rise time and its decay time.

First we observe that the influence of a single (or even a few) NMDA-channels on the
membrane potential can be neglected in comparison to a BP-spike1, which, due to active
processes, leads to a depolarisation of often more than50 mV even at distal dendrites
because of active processes [15]. Thus, we can assume that the dynamics of the membrane
potential is established by the backpropagating spike and the resting potentialVrest:

C
dv(t)
dt

= iBP (t) +
Vrest − v(t)

R
(5)

Thisequation can be further simplified. Next we assume that the second passive repolarisa-
tion term can also be absorbed intoiBP , thus resulting toitotal(t) = iBP (t) + Vrest−v(t)

R .
To this end we modelitotal as a derivative of a band-pass filter function:

itotal(t) = ītotal
a2e

−a2t − b2e
−b2t

a2 − b2
(6)

1Notethat in spines, however, synaptic input can lead to large changes in the postsynaptic poten-
tial. In such casesg(t) contributes substantially tov(t).



whereītotal is the current amplitude. This filter function causes first an influx of charges
into the dendrite and then again an outflux of charges. The time constantsa2 andb2 deter-
mine the timing of the current flow and therefore the rise and decay time. The total charge
flux is zero so that the resting potential is reestablished after a backpropagating spike.

In this way the active de- and repolarising properties of a BP-spike can be combined with
the passive properties of the membrane, in practise by a curve fitting procedure which yields
a2, b2. As a result we find that the membrane equation in our case reduces to:

C
dv(t)
dt

= itotal(t) (7)

We receive the resulting membrane potential simply by integrating Eq. 6:

v(t) =
ītotal

C

e−b2t − e−a2t

a2 − b2
(8)

Notethe sign inversion betweenv (Eq. 8) andi (Eq. 6, the one being the derivative of the
other.

The NMDA conductanceg is more complex, because the membrane potential enters the
denominator in Eq. 2. To simplify we perform a Taylor expansion aroundv = 0 mV .
We expand around0 mV and not around the resting potential. There are two reasons.
First, we are interested in theopen NMDA channel. This is the case for voltages towards
0 mV . Second, the NMDA channel has a strong non-linearity around the resting potential.
Towards0 mV , however, the NMDA channel has a linear voltage/current curve. Therefore
it makes sense to expand around0 mV .

The NMDA conductance can now be written as:

g(t) = ḡ
e−b1t − e−a1t

a1 − b1
· ( 1

κ + 1
+

γκv(t)
(κ + 1)2

+ . . .) (9)

and finally the potentialv(t) (Eq. 8) can be inserted:

g(t) = ḡ
e−b1t − e−a1t

a1 − b1
· (10)(

1
κ + 1

+
ītotalγκe−b2t

C(κ + 1)2(a2 − b2)
− ītotalγκe−a2t

C(κ + 1)2(a2 − b2)
+ . . .

)
(11)

terminating the Taylor series after the second term this leads to three contributions to the
conductance:

g(t) =
ḡ

κ + 1
e−b1t − e−a1t

a1 − b1︸ ︷︷ ︸
g(0)

(12)

− ḡītotalγκ

(κ + 1)2C
e−(b1+a2)t − e−(a1+a2)t

(a1 − b1)(a2 − b2)︸ ︷︷ ︸
g(1a)

(13)

+
ḡītotalγκ

(κ + 1)2C
e−(b1+b2)t − e−(a1+b2)t

(a1 − b1)(a2 − b2)︸ ︷︷ ︸
g(1b)

(14)

To perform the correlation in Eq. 4 we transform the required terms into the Laplace domain
getting:

g(0,1a,1b)(t) = k
e−βt − e−αt

α− β
↔ G(0,1a,1b)(s) = k

1
(s + α)(s + β)

(15)

itotal(t) = ītotal
a2e

−a2t − b2e
−b2t

a2 − b2
↔ Itotal(s) = ītotal

s

(s + a2)(s + b2)
(16)



whereα andβ take the coefficient values from the exponential terms ing(0), g(1a), g(1b),
respectively andk are the corresponding multiplicative factors2.

A correlation in the Laplace domain is expressed by Plancherel’s theorem [16]:

∆ρ =
1
2π

(∫ +∞

−∞
G(0)(−ıω)e−ıωT It(ıω)dω (17)

−
∫ +∞

−∞
G(1a)(−ıω)e−ıωT It(ıω)dω (18)

+
∫ +∞

−∞
G(1b)(−ıω)e−ıωT It(ıω)dω

)
(19)

The solution is calculated with the method of residuals which leads to a split of the result
into T ≥ 0 andT < 0 and we get:

ForT ≥ 0:

∆ρ(T ) =
ḡītotal

(κ + 1)C

[
b1e−b1T

B
(0)
+

− a1e−a1T

A
(0)
+

(20)

− γκītotal

(κ+1)(a2−b2)C

(
(b1+a2)e

−(b1+a2)T

B
(1)
+

− (a1+a2)e
−(a1+a2)T

A
(1)
+

)
(21)

+ γκītotal

(κ+1)(a2−b2)C

(
(b1+b2)e

−(b1+b2)T

B
(1)
+

− (a1+b2)e
−(a1+b2)T

A
(1)
+

)]
(22)

with A
(0)
+ = (a1−b1)(a1+a2)(a1+b2), A

(1)
+ = (a1−b1)(a1+2a2)(a1+a2+b2), B

(0)
+ =

(a1 − b1)(b1 + b2)(a2 + b1), B
(1)
+ = (a1 − b1)(2a2 + b1)(a2 + b1 + b2).

ForT < 0:

∆ρ(T ) =
ḡītotal

(κ + 1)C

[
a2ea2T

A
(0)
−

− b2eb2T

B
(0)
−

(23)

− γκītotal

(κ+1)(a2−b2)C

(
a2ea2T

A
(1a)
−

− b2eb2T

B
(1a)
−

)
(24)

+ γκītotal

(κ+1)(a2−b2)C

(
a2ea2T

A
(1b)
−

− b2eb2T

B
(1b)
−

)]
(25)

with A
(0)
− = (a2− b2)(a1 +a2)(a2 + b1), A

(1a)
− = (a2− b2)(a1 +2a2)(2a2 + b1), A

(1b)
− =

(a2 − b2)(a1 + b2 + a2)(a2 + b1 + b2), B
(0)
− = (a2 − b2)(a1 + b2)(b1 + b2), B

(1a)
− =

(a2 − b2)(a1 + a2 + b2)(b1 + a2 + b2), B
(1b)
− = (a2 − b2)(a1 + 2b2)(b1 + 2b2).

The resulting equations contain interesting symmetries which makes the interpretation easy.
We observe that they split into three terms. ForT > 0 the first term captures the NMDA
influence only, while forT < 0 it captures the influence of only the BP-spike (apart from
scaling factors). Mixed influences arise from the second and third terms which scale with
the peak current amplitudēitotal of the BP-spike.

3 Results

While the properties of mature NMDA channels are captured by the parameters given for
Eq. 2 and remain fairly constant, BP-spikes change their shapes along the dendrite. Thus,

2We use lower-case letters for functions in the time-domain and upper-case letters for their equiv-
alent in the Laplace domain.



Figure 2: (A-F) STDP-curves obtained from Eqs. 22, 25 and corresponding normalised
BP-spikes (G-I,ītotal = 1, left y-axis: current, right y-axis: integrated potential). Panels
A-C were obtained with different peak currentsītotal = 0.5 nA, 0.1nA and25pA. These
currents cause peak voltages of40mV, 50mV and40mV respectively. Panels D-F were
all simulated with a peak current ofītotal = 5.0 nA. This current is unrealistic, however, it
is chosen for illustrative purposes to show the different contributions to the learning curve
(the dashed lines forG(0) and the dotted lines forG(1a,b) and the solid lines for the sum
of the two contributions). Time constants for the BP-spikes were: (A,D,G)a−1

2 = τa =
0.0095 ms, b−1

2 = τb = 0.01 ms (B,E,H)τa = 0.05 ms, τb = 0.1 ms (C,F,I)τa = 0.1 ms,
τb = 1.0 ms.

we kept the NMDA properties unchanged and varied the time constants of the BP-spikes
as well as the current amplitude to simulate this effect. Fig. 2 shows STDP curves (solid
lines, A-F) and the corresponding BP-spikes (G-I). The contributions of the different terms
to the STDP curves are also shown (first term, dashed, as well as second and third term
scaled with their fore-factor, dotted). All curves have arbitrary units. As expected we find
that the first term dominates for small (realistic) currents (top panels), while the second and
third terms dominate for higher currents (middle panels). Furthermore, we find that long
BP-spikes will lead to plain Hebbian learning, where only LTP but no LTD is observed
(B,C,E,F).

4 Discussion

We believe that two of our findings could be of longer lasting relevance for the under-
standing of synaptic learning, provided they withstand physiological scrutinising: 1) The
shape of the weight change curves heavily relies on the shape of the backpropagating spike.
2) STDP can turn into plain Hebbian learning if the postsynaptic depolarisation (i.e., the
BP-spike) rises shallow.

Physiological studies suggest that weight change curves can indeed have a widely varying
shape (reviewed in [17]). In this study we argue that in particular the shape of the back-



propagating spike influences the shape of the weight change curve. In fact the dendrites
canbe seen as active filters which change the shape of backpropagating spikes during their
journey to the distal parts of the dendrite [18]. In particular, the decay time of the BP spike
is increased in the distal parts of the dendrite [15]. The different decay times determine if
we get pure symmetric Hebbian learning or STDP (see Fig. 2). Thus, the theoretical result
would suggest temporal symmetric Hebbian learning in the distal dendrites and STDP in
the proximal dendrites. From a computational perspective this would mean that the distal
dendrites perform principle component analysis [19] and the proximal dendrites temporal
sequence learning [20].

Now, our model has to be compared to other models of STDP. We can count our model
to the “state variable models”. Such models can either adopt a rather descriptive approach
[21], where appropriate functions are being fit to the measured weight change curves. Oth-
ers are closer to the kinetic models in trying to fit phenomenological kinetic equations
[7, 22, 23, 9]. Those models establish a more realistic relation between calcium concen-
tration and membrane potential. The calcium concentration seems to be a low-pass filtered
version of the membrane potential [24]. Such a low pass filterhlow could be added to the
learning rule Eq. 3 resulting in:dρ/dt = g(t)hlow(t) ∗ v′(t).

The approaches of [9] as well as of Karmarkar and co-workers [23] are closely related to
our model. Both models investigate the effects of different calcium concentrationlevels by
assuming certain (e.g. exponential) functional characteristics to govern its changes. This
allows them to address the question of how different calcium levels will lead to LTD or
LTP [25]. Both model-types [9, 23, 8] were designed to produce a zero-crossing (transition
between LTD and LTP) atT = 0. The differential Hebbian rule employed by us leads to the
observed results as the consequence of the fact that the derivative of any generic unimodal
signal will lead to a bimodal curve. We utilise the derivative of the unimodal membrane
potential to obtain a bimodal weight change curve. The derivative of the membrane po-
tential is proportional to the charge transferdqt

dt = it acrossthe (post-synaptic) membrane
(see Eq. 7). There is wide ranging support that synaptic plasticity is strongly dominated by
calcium transfer through NMDA channels [26, 27, 6]. Thus it seems reasonable to assume
that a part ofdQ

dt representscalcium flow through the NMDA channel.
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