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Abstract

Super-resolution aims to produce a high-resolution image from a set of
one or more low-resolution images by recovering or inventing plausible
high-frequency image content. Typical approaches try to reconstruct a
high-resolution image using the sub-pixel displacements of several low-
resolution images, usually regularized by a generic smoothness prior over
the high-resolution image space. Other methods use training data to learn
low-to-high-resolution matches, and have been highly successful even
in the single-input-image case. Here we present a domain-specific im-
age prior in the form of a p.d.f. based upon sampled images, and show
that for certain types of super-resolution problems, this sample-based
prior gives a significant improvement over other common multiple-image
super-resolution techniques.

1 Introduction

The aim of super-resolution is to take a set of one or more low-resolution input images of
a scene, and estimate a higher-resolution image. If there are several low resolution images
available with sub-pixel displacements, then the high frequency information of the super-
resolution image can be increased.

In the limiting case when the input set is just a single image, it is impossible to recover
any high-frequency information faithfully, but much success has been achieved by train-
ing models to learn patchwise correspondences between low-resolution and possible high-
resolution information, and stitching patches together to form the super-resolution im-
age [1]. A second approach uses an unsupervised technique where latent variables are
introduced to model the mean intensity of groups of surrounding pixels [2].

In cases where the high-frequency detail is recovered from image displacements, the
models tend to assume that each low-resolution image is a subsample from a true high-
resolution image or continuous scene. The generation of the low-resolution inputs can then
be expressed as a degradation of the super-resolution image, usually by applying an image
homography, convolving with blurring functions, and subsampling [3, 4, 5, 6, 7, 8, 9].

Unfortunately, the ML (maximum likelihood) super-resolution images obtained by revers-



ing the generative process above tend to be poorly conditioned and susceptible to high-
frequency noise. Most approaches to multiple-image super-resolution use a MAP (maxi-
mum a-posteriori) approach to regularize the solution using a prior distribution over the
high-resolution space. Gaussian process priors [4], Gaussian MRFs (Markov Random
Fields) and Huber MRFs [3] have all been proposed as suitable candidates.

In this paper, we consider an image prior based upon samples taken from other images,
inspired by the use of non-parametric sampling methods in texture synthesis [10]. This
texture synthesis method outperformed many other complex parametric models for texture
representation, and produces perceptively correct-looking areas of texture given a sample
texture seed. It works by finding texture patches similar to the area around a pixel of
interest, and estimating the intensity of the central pixel from a histogram built up from
similar samples. We turn this approach around to produce an image prior by finding areas
in our sample set that are similar to patches in our super-resolution image, and evaluate
how well they match, building up a p.d.f. over the high-resolution image. In short, given
a set of low resolution images and example images of textures in the same class at the
higher resolution, our objective is to construct a super-resolution image using a prior that
is sampled from the example images.

Our method differs from the previous super-resolution methods of [1, 7] in two ways: first,
we use our training images to estimate a distribution rather than learn a discrete set of low-
resolution to high-resolution matches from which we must build up our output image; sec-
ond, since we are using more than one image, we naturally fold in the extra high-frequency
information available from the low-resolution image displacements.

We develop our model in section 2, and expand upon some of the implementation details
in section 3, as well as introducing the Huber prior model against which most of the com-
parisons in this paper are made. In section 4 we display results obtained with our method
on some simple images, and in section 5 we discuss these results and future improvements.

2 The model

In this section we develop the mathematical basis for our model. The main contribution
of this work is in the construction of the prior over the super-resolution image, but first we
will consider the generative model for the low-resolution image generation, which closely
follows the approaches of [3] and [4]. We have K low-resolution images y(k), which we
assume are generated from the super-resolution image x by

y(k) = W (k)x + εG
(k) (1)

where εG is a vector of i.i.d. Gaussians εG ∼ N (0, β−1
G ), and βG is the noise precision.

The construction of W involves mapping each low-resolution pixel into the space of the
super-resolution image, and performing a convolution with a point spread function. The
constructions given in [3] and [4] are very similar, though the former uses bilinear interpo-
lation to achieve a more accurate approximation.

We begin by assuming that the image registration parameters may be determined a priori,
so each input image has a corresponding set of registration parameters θ(k). We may now
construct the likelihood function

p(y(k)|x,θ(k)) =
(βG

2π

)M/2

exp
[

−
βG

2
||y(k) − W (k)x||2

]

(2)

where each input image is assumed to have M pixels (and the super-resolution image N
pixels).

The ML solution for x can be found simply by maximizing equation 2 with respect to x,



which is equivalent to minimizing the negative log likelihood

− log p({y(k)}|x, {θ(k)}) ∝
K

∑

k=1

||y(k) − W (k)x||2, (3)

though super-resolved images recovered in this way tend to be dominated by a great deal
of high-frequency noise.

To address this problem, a prior over the super-resolution image is often used. In [4],
the authors restricted themselves to Gaussian process priors, which made their estimation
of the registration parameters θ tractable, but encouraged smoothness across x without
any special treatment to allow for edges. The Huber Prior was used successfully in [3]
to penalize image gradients while being less harsh on large image discontinuities than a
Gaussian prior. Details of the Huber prior are given in section 3.

If we assume a uniform prior over the input images, the posterior distribution over x is of
the form

p(x|{y(k),θ(k)}) ∝ p(x)

K
∏

k=1

p(y(k)|x,θ(k)). (4)

To build our expression for p(x), we adopt the philosophy of [10], and sample from other
example images rather than developing a parametric model. A similar philosophy was used
in [11] for image-based rendering. Given a small image patch around any particular pixel,
we can learn a distribution for the central pixel’s intensity value by examining the values
at the centres of similar patches from other images. Each pixel xi has a neighbourhood
region R(xi) consisting of the pixels around it, but not including xi itself. For each R(xi),
we find the closest neighbourhood patch in the set of sampled patches, and find the central
pixel associated with this nearest neighbour, LR(xi). The intensity of our original pixel
is then assumed to be Gaussian distributed with mean equal to the intensity of this central
pixel, and with some precision βT ,

xi ∼ N (LR(xi), β
−1
T ) (5)

leading us to a prior of the form

p(x) =
(βT

2π

)N/2

exp
[

−
βT

2
||x − LR(x)||2

]

. (6)

Inserting this prior into equation 4, the posterior over x, and taking the negative log, we
have

− log p(x|{y(k),θ(k)}) ∝ β||x − LR(x)||2 +

K
∑

k=1

||y(k) − W (k)x||2 + c, (7)

where the right-hand side has been scaled to leave a single unknown ratio β between the
data error term and the prior term, and includes an arbitrary constant c. Our super-resolution
image is then just arg minx(L), where

L = β||x − LR(x)||2 +

K
∑

k=1

||y(k) − W (k)x||2. (8)

3 Implementation details

We optimize the objective function of equation 8 using scaled conjugate gradients (SCG)
to obtain an approximation to our super-resolution image. This requires an expression for



the gradient of the function with respect to x. For speed, we approximate this by

dL

dx
= 2β

(

x − LR(x)
)

−
2

K

K
∑

k=1

W (k)T
(

y(k) − W (k)x
)

, (9)

which assumes that small perturbations in the neighbours of x will not change the value
returned by LR(x). This is obviously not necessarily the case, but leads to a more efficient
algorithm. The same k-nearest-neighbour variation introduced in [10] could be adopted to
smooth this response.

Our image patch regions R(xi) are square windows centred on xi, and pixels near the edge
of the image are supported using the average image of [3] extending beyond the edge of the
super-resolution image. To compute the nearest region in the example images, patches are
normalized to sum to unity, and centre weighted as in [10] by a 2-dimensional Gaussian.
The width of the image patches used, and of the Gaussian weights, depends very much
upon the scales of the textures present in the image. Our images intensities were in the
range [0, 1], and all the work so far has been with grey-scale images.

Most of our results with this sample-based prior are compared to super-resolution images
obtained using the Huber prior used in [3]. Other edge-preserving functions are discussed
in [12], though the Huber function performed better than these as a prior in this case. The
Huber potential function is given by

ρ(x) =
{

x2, if |x| ≤ α
2α|x| − α2, otherwise.

(10)

If G is a matrix which pre-multiplies x to give a vector of first-order approximations to the
magnitude of the image gradient in the horizontal, vertical, and two diagonal directions,
then the Huber prior we use is of the form:

p(x) =
1

Z
exp

[

− γ

4N
∑

i=1

ρ((Gx)i)
]

(11)

for some prior strength γ, Z is the partition function, and (Gx) is the 4N × 1 column
vector of approximate derivatives of x in the four directions mentioned above.

Plugging this into the posterior distribution of equation 4 leads to a Huber MAP image xH

which minimizes the negative log probability

LH = β
4N
∑

i=1

ρ((Gx)i) +
K

∑

k=1

||y(k) − W (k)x||2, (12)

where again the r.h.s. has been scaled so that β is the single unknown ratio parameter. We
also optimize this by SCG, using the full analytic expression for dLH

dx
.

4 Preliminary results

To test the performance of our texture-based prior, and compare it with that of the Huber
prior, we produced sets of input images by running the generative model of equation 1 in
the forward direction, introducing sub-pixel shifts in the x- and y-directions, and a small
rotation about the viewing axis. We added varying amounts of Gaussian noise (2/256,
6/256 and 12/256, grey levels) and took varying number of these images (2, 5, 10) to
produce nine separate sets of low-resolution inputs from each of our initial “ground-truth”
high resolution images. Figure 1 shows three 100 × 100 pixel ground truth images, each
accompanied by corresponding 40 × 40 pixel low-resolution images generated from the



ground truth images at half the resolution, with 6/256 levels of noise. Our aim was to
reconstruct the central 50 × 50 pixel section of the original ground truth image. Figure 2
shows the example images from which our texture samples patches were taken 1 – note that
these do not overlap with the sections used to generate the low-resolution images.

Text Truth Brick Truth Beads Truth Text Low−res Brick Low−res Beads Low−res

Figure 1: Left to right: ground truth text, ground truth brick, ground truth beads, low-res
text, low-res brick and low-res beads.

Figure 2: Left: Text sample (150 × 200 pixels). Centre: Brick sample (200 × 200 pixels).
Right: Beads sample (60 × 60 pixels).

Figure 3 shows the difference in super-resolution image quality that can be obtained using
the sample-based prior over the Huber prior using identical input sets as described above.

For each Huber super-resolution image, we ran a set of reconstructions, varying the Huber
parameter α and the prior strength parameter β. The image shown for each input num-
ber/noise level pair is the one which gave the minimum RMS error when compared to the
ground-truth image; these are very close to the “best” images chosen from the same sets by
a human subject.

The images shown for the sample-based prior are again the best (in the sense of having
minimal RMS error) of several runs per image. We varied the size of the sample patches
from 5 to 13 pixels in edge length – computational cost meant that larger patches were not
considered. Compared to the Huber images, we tried relatively few different patch size and
β-value combinations for our sample-based prior; again, this was due to our method taking
longer to execute than the Huber method. Consequently, the Huber parameters are more
likely to lie close to their own optimal values than our sample-based prior parameters are.

We also present images recovered using a “wrong” texture. We generated ten low-
resolution images from a picture of a leaf, and used texture samples from a small black-and-
white spiral in our reconstruction (Figure 4). A selection of results are shown in Figure 5,
where we varied the β parameter governing the prior’s contribution to the output image.

1Text grabbed from Greg Egan’s novella Oceanic, published online at the author’s website. Brick
image from the Brodatz texture set. Beads image from http://textures.forrest.cz/.
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Figure 3: Recovering the super-resolution images at a zoom factor of 2, using the texture-
based prior (left column of plots) and the Huber MRF prior (right column of plots). The text
and brick datasets contained 2, 6, 12 grey levels of noise, while the beads dataset used 2,
12 and 32 grey levels. Each image shown is the best of several attempts with varying prior
strengths, Huber parameter (for the Huber MRF prior images) and patch neighbourhood
sizes (for the texture-based prior images).



Using a low value gives an image not dissimilar to the ML solution; using a significantly
higher value makes the output follow the form of the prior much more closely, and here this
means that the grey values get lost as the evidence for them from the data term is swamped
by the black-and-white pattern of the prior.

Figure 4: The original 120×120 high-resolution image (left), and the 80×80 pixel “wrong”
texture sample image (right).

beta=0.01 beta=0.04 beta=0.16 beta=0.64

Figure 5: Four 120×120 super-resolution images are shown on the lower row, reconstructed
using different values of the prior strength parameter β: 0.01, 0.04, 0.16, 0.64, from left to
right.

5 Discussion and further considerations

The images of Figure 3 show that our prior offers a qualitative improvement over the
generic prior, especially when few input images are available.

Quantitively, our method gives an RMS error of approximately 25 grey levels from only 2
input images with 2 grey levels of additive Gaussian noise on the text input images, whereas
the best Huber prior super-resolution image for that image set and noise level uses all 10
available input images, and still has an RMS error score of almost 30 grey levels.

Figure 6 plots the RMS errors from the Huber and sample-based priors against each other.
In all cases, the sample-based method fares better, with the difference most notable in the
text example.

In general, larger patch sizes (11 × 11 pixels) give smaller errors for the noisy inputs,
while small patches (5× 5) are better for the less noisy images. Computational costs mean
we limited the patch size to no more than 13 × 13, and terminated the SCG optimization
algorithm after approximately 20 iterations.

In addition to improving the computational complexity of our algorithm implementation,
we can extend this work in several directions. Since in general the textures for the prior
will not be invariant to rotation and scaling, consideration of the registration of the input
images will be necessary. The optimal patch size will be a function of the image textures,
so learning this as a parameter of an extended model, in a similar way to how [4] learns the
point-spread function for a set of input images, is another direction of interest.
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Figure 6: Comparison of RMS errors in reconstructing the text, brick and bead images
using the Huber and sample-based priors.
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