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Abstract

Loopy belief propagation (BP) has been successfully used in a num-
ber of difficult graphical models to find the most probable configu-
ration of the hidden variables. In applications ranging from protein
folding to image analysis one would like to find not just the best
configuration but rather the top M . While this problem has been
solved using the junction tree formalism, in many real world prob-
lems the clique size in the junction tree is prohibitively large. In
this work we address the problem of finding the M best configura-
tions when exact inference is impossible.

We start by developing a new exact inference algorithm for calculat-
ing the best configurations that uses only max-marginals. For ap-
proximate inference, we replace the max-marginals with the beliefs
calculated using max-product BP and generalized BP. We show em-
pirically that the algorithm can accurately and rapidly approximate
the M best configurations in graphs with hundreds of variables.

1 Introduction

Considerable progress has been made in the field of approximate inference using
techniques such as variational methods [7], Monte-Carlo methods [5], mini-bucket
elimination [4] and belief propagation (BP) [6]. These techniques allow approximate
solutions to various inference tasks in graphical models where building a junction
tree is infeasible due to the exponentially large clique size. The inference tasks that
have been considered include calculating marginal probabilities, finding the most
likely configuration, and evaluating or bounding the log likelihood.

In this paper we consider an inference task that has not been tackled with the same
tools of approximate inference: calculating the M most probable configurations
(MPCs). This is a natural task in many applications. As a motivating example,
consider the protein folding task known as the side-chain prediction problem. In
our previous work [17], we showed how to find the minimal-energy side-chain con-
figuration using approximate inference in a graphical model. The graph has 300



nodes and the clique size in a junction tree calculated using standard software [10]
can be up to an order of 1042, so that exact inference is obviously impossible. We
showed that loopy max-product belief propagation (BP) achieved excellent results
in finding the first MPC for this graph. In the few cases where BP did not con-
verge, Generalized Belief Propagation (GBP) always converge, with an increase in
computation. But we are also interested in finding the second best configuration,
the third best or, more generally, the top M configurations. Can this also be done
with BP ?

The problem of finding theM MPCs has been successfully solved within the junction
tree (JT) framework. However, to the best of our knowledge, there has been no
equivalent solution when building a junction tree is infeasible. A simple solution
would be outputting the topM configurations that are generated by a Monte-Carlo
simulation or by a local search algorithm from multiple initializations. As we show
in our simulations, both of these solutions are unsatisfactory. Alternatively, one
can attempt to use more sophisticated heuristically guided search methods (such
as A∗) or use exact MPCs algorithms on an approximated, reduced size junction
tree [4, 1]. However, given the success of BP and GBP in finding the first MPC in
similar problems [6, 9] it is natural to look for a method based on BP. In this paper
we develop such an algorithm. We start by showing why the standard algorithm [11]
for calculating the top M MPCs cannot be used in graphs with cycles. We then
introduce a novel algorithm called Best Max-Marginal First (BMMF) and show
that when the max-marginals are exact it provably finds the M MPCs. We show
simulation results of BMMF in graphs where exact inference is impossible, with
excellent performance on challenging graphical models with hundreds of variables.

2 Exact MPCs algorithms

We assume our hidden variables are denoted by a vector X, N = |X| and the
observed variables by Y , where Y = y. Letmk = (mk(1),mk(2), · · · ,mk(N)) denote
the kth MPC. We first seek a configuration m1 that maximizes Pr(X = x|y). Pearl,
Dawid and others [12, 3, 11] have shown that this configuration can be calculated
using a quantity known as max-marginals (MMs):

max marginal(i, j) = max
x:x(i)=j

Pr(X = x|y) (1)

Max-marginal lemma: If there exists a unique MAP assignment m1 (i.e.
Pr(X = m1|y) > Pr(X = x|y),∀x 6= m1) then x1 defined by x1(i) =
argmaxj max marginal(i, j) will recover the MAP assignment, m1 = x1.

Proof: Suppose, that there exists i for which m1(i) = k, x1(i) = l, and k 6= l.
It follows that maxx:x(i)=k Pr(X = x|y) > maxx:x(i)=l Pr(X = x|y) which is a
contradiction to the definition of x1.

When the graph is a tree, the MMs can be calculated exactly using max-product
belief propagation [16, 15, 12] using two passes: one up the tree and the other down
the tree. Similarly, for an arbitrary graph they can be calculated exactly using two
passes of max-propagation in the junction tree [2, 11, 3].

A more efficient algorithm for calculating m1 requires only one pass of max-
propagation. After calculating the max-marginal exactly at the root node, the
MAP assignment m1 can be calculated by tracing back the pointers that were used
during the max-propagation [11]. Figure 1a illustrates this traceback operation in
the Viterbi algorithm in HMMs [13] (the pairwise potentials favor configurations
where neighboring nodes have different values). After calculating messages from left
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Figure 1: a. The traceback operation in the Viterbi algorithm. The MAP con-
figuration can be calculated by a forward message passing scheme followed by a
backward “traceback”. b. The same traceback operation applied to a loopy graph
may give inconsistent results.

to right using max-product, we have the max-marginal at node 3 and can calculate
x1(3) = 1. We then use the value of x1(3) and the message from node 1 to 2 to find
x1(2) = 0. Similarly, we then trace back to find the value of x1(1).

These traceback operations, however, are problematic in loopy graphs. Figure 1b
shows a simple example from [15] with the same potentials as in figure 1a. After
setting x1(3) = 1 we traceback and find x1(2) = 0, x1(1) = 1 and finally x1(3) = 0,
which is obviously inconsistent with our initial choice.

One advantage of using traceback is that it can recover m1 even if there are “ties”
in the MMs, i.e. when there exists a max-marginal that has a non-unique maxi-
mizing value. When there are ties, the max-marginal lemma no longer holds and
independently maximizing the MMs will not find m1 (cf. [12]).

Finding m1 using only MMs requires multiple computation of MMs — each time
with the additional constraint x(i) = j, where i is a tied node and j one of its
maximizing values — until no ties exist. It is easy to show that this algorithm
will recover m1. The proof is a special case of the proof we present for claim 2 in
the next section. However, we need to recalculate the MMs many times until no
more ties exist. This is the price we pay for not being able to use traceback. The
situation is similar if we seek the M MPCs.

2.1 The Simplified Max-Flow Propagation Algorithm

Nilsson’s Simplified Max-Flow Propagation (SMFP) [11] starts by calculating the
MMs and using the max-marginal lemma to find m1. Since m2 must differ from m1

in at least one variable, the algorithm defines N conditioning sets, Ci , (x(1) =
m1(1), x(2) = m1(2), · · · , x(i−1) = m1(i−1), x(i) 6= m1(i)). It then uses the max-
marginal lemma to find the most probable configuration given each conditioning
set, xi = argmaxx Pr(X = x|y, Ci) and finally m2 = argmaxx∈{xi} Pr(X = x|y).
Since the conditioning sets form a partition, it is easy to show that the algorithm
finds m2 after N calculations of the MMs. Similarly, to find mk the algorithm uses
the fact that mk must differ from m1,m2, · · · ,mk−1 in at least one variable and
forms a new set of up to N conditioning sets. Using the max-marginal lemma one
can find the MPC given each of these new conditioning sets. This gives up to N
new candidates, in addition to (k−1)(N−1) previously calculated candidates. The



Figure 2: An illustration of our novel BMMF algorithm on a simple example.

most probable candidate out of these k(N − 1) + 1 is guaranteed to be mk.

As pointed out by Nilsson, this simple algorithm may require far too many cal-
culations of the MMs (O(MN)). He suggested an algorithm that uses traceback
operations to reduce the computation significantly. Since traceback operations are
problematic in loopy graphs, we now present a novel algorithm that does not use
traceback but may require far less calculation of the MMs compared to SMFP.

2.2 A novel algorithm: Best Max-Marginal First

For simplicity of exposition, we will describe the BMMF algorithm under what we
call the strict order assumption, that no two configurations have exactly the same
probability.

We illustrate our algorithm using a simple example (figure 2). There are 4 bi-
nary variables in the graphical model and we can find the top 3 MPCs exactly:
1100, 1110, 0001.

Our algorithm outputs a set of candidates xt, one at each iteration. In the first
iteration, t = 1, we start by calculating the MMs, and using the max-marginal
lemma we find m1. We now search the max-marginal table for the next best max-
marginal value. In this case it is obtained with x(3) = 1. In the second iteration,
t = 2, we now lock x(3) = 1. In other words, we calculate the MMs with the added
constraint that x(3) to 1. We use the max-marginal lemma to find the most likely
configuration with x(3) = 1 locked and obtain x2 = 1110. Note that we have found
the second most likely configuration. We then add the complementary constraint
x(3) 6= 1 to the originating constraints set and calculate the MMs. In the third
iteration, t = 3, we search both previous max-marginal tables and find the best
remaining max-marginal. It is obtained at x(1) = 0, t = 1. We now add the
constraint x(1) = 0 to the constraints set from t = 1, calculate the MMs and use
the max-marginal lemma to find x3 = 0001. Finally, we add the complementary
constraint x(1) 6= 0 to the originating constraints set and calculate the MMs. Thus



after 3 iterations we have found the first 3 MPCs using only 5 calculations of the
MMs.

The Best Max-Marginal First (BMMF) algorithm for calculating the M
most probable configurations:

• Initialization

SCORE1(i, j) = max
x:x(i)=j

Pr(X = x|y) (2)

x1(i) = argmax
j

SCORE1(i, j) (3)

CONSTRAINTS1 = ∅ (4)

USED2 = ∅ (5)

• For t=2:T

SEARCHt = (i, j, s < t : xs(i) 6= j, (i, j, s) /∈ USEDt) (6)

(it, jt, st) = arg max
(i,j,s)∈SEARCHt

SCOREs(i, j) (7)

CONSTRAINTSt = CONSTRAINTSst
∪ {(x(it) = jt)} (8)

SCOREt(i, j) = max
x:x(i)=j,CONSTRAINTSt

Pr(X = x|y) (9)

xt(i) = argmax
j

SCOREt(i, j) (10)

USEDt+1 = USEDt ∪ {(it, jt, st)} (11)

CONSTRAINTSst
= CONSTRAINTSst

∪ {(x(it) 6= jt)} (12)

SCOREst
(i, j) = max

x:x(i)=j,CONSTRAINTSst

Pr(X = x|y) (13)

Claim 1: x1 calculated by the BMMF algorithm is equal to the MPC m1.

Proof: This is just a restatement of the max-marginal lemma.

Claim 2: x2 calculated by the BMMF algorithm is equal to the second MPC m2.

Proof: We first show that m2(i2) = j2. We know that m2 differs in at least one
location from m1. We also know that out of all the assignments that differ from m1

it must have the highest probability. Suppose, that m2(i2) 6= j2. By the definition
of SCORE1, this means that there exists an x 6= m2 that is not m1 whose posterior
probability is higher than that of m2. This is a contradiction. Now, out of all
assignments for which x(i2) = j2, m2 has highest posterior probability (recall that
by definition, m1(i2) 6= j2). The max-marginal lemma guarantees that x2 = m2.

Partition Lemma: Let SATk denote the set of assignments satisfying
CONSTRAINTSk. Then, after iteration k, the collection {SAT1,SAT2, · · · ,SATk}
is a partition of the assignment space.

Proof: By induction over k. For k = 1, CONSTRAINTS1 = ∅ and the claim
trivially holds. For k = 2, SAT1 = {x|x(i2) 6= j2} and SAT2 = {x|x(i2) = j2}
are mutually disjoint and SAT1 ∪ SAT2 covers the assignment space, therefore
{SAT1,SAT2} is a partition of the assignment space. Assume that after itera-
tion k − 1, {SAT1,SAT2, · · · ,SATk−1} is a partition of the assignment space. Note
that in iteration k, we add CONSTRAINTSk = CONSTRAINTSsk

∪ {(x(ik) = jk)}
and modify CONSTRAINTSsk

= CONSTRAINTSsk
∪ {(x(ik) 6= jk)}, while keep-

ing all other constraints set unchanged. SATk and the modified SATsk
are pair-

wise disjoint and SATk ∪ SATsk
covers the originating SATsk

. Since after itera-



tion k − 1 {SAT1,SAT2, · · · ,SATk−1} is a partition of the assignment space, so is
{SAT1,SAT2, · · · ,SATk}.

Claim 3: xk, the configuration calculated by the algorithm in iteration k, is mk,
the kth MPC.

Proof: First, note that SCOREsk
(ik, jk) ≤ SCOREsk−1

(ik−1, jk−1), otherwise (ik, jk, sk)
would have been chosen in iteration k − 1. Following the partition lemma, each
assignment arises at most once. By the strict order assumption, this means that
SCOREsk

(ik, jk) < SCOREsk−1
(ik−1, jk−1).

Let mk ∈ SATs∗ . We know that mk differs from all previous xs in at least one
location. In particular, mk must differ from xs∗ in at least one location. Denote
that location by i∗ and mk(i

∗) = j∗. We want to show that SCOREs∗(i
∗, j∗) =

Pr(X = mk|y). First, note that (i
∗, j∗, s∗) /∈ USEDk. If we had previously used it,

then (x(i∗) 6= j∗) ∈ CONSTRAINTSs∗ , which contradicts the definition of s∗. Now
suppose there exists ml, l ≤ k − 1 such that ml ∈ SATs∗ and ml(i

∗) = j∗. Since
(i∗, j∗, s∗) /∈ USEDk this would mean that SCOREsk

(ik, jk) ≥ SCOREsk−1
(ik−1, jk−1)

which is a contradiction. Thereforemk is the most probable assignment that satisfies
CONSTRAINTSs∗ and has the value j∗ at location i∗. Hence SCOREs∗(i

∗, j∗) =
Pr(X = mk|y).

A consequence of claim 3 is that BMMF will find the top M MPCs using 2M
calculations of max marginals. In contrast, SMFP requires O(MN) calculations.
In real world loopy problems, especially when NÀM , this can lead to drastically
different run times. First, real world problems may have thousands of nodes so
a speedup of a factor of N will be very significant. Second, calculating the MMs
requires iterative algorithms (e.g. BP or GBP) so that the speedup of a factor of
N may be the difference between running a month versus running half a day.

3 Approximate MPCs algorithms using loopy BP

We now compare 4 approximate MPCs algorithms:

1. loopy BMMF. This is exactly the algorithm in section 2.2 with the MMs
based on the beliefs computed by loopy max-product BP or max-GBP:

SCOREk(i, j) = Pr(X = xk|y)
BEL(i, j|CONSTRAINTSk)

maxjBEL(i, j|CONSTRAINTSk)
(14)

2. loopy SMFP. This is just Nilsson’s SMFP algorithm with the MMs cal-
culated using loopy max-product BP.

3. Gibbs sampling. We collect all configurations sampled during a Gibbs
sampling simulation and output the top M of these.

4. Greedy. We collect all configurations encountered during a greedy opti-
mization of the posterior probability (this is just Gibbs sampling at zero
temperature) and output the top M of these.

All four algorithms were implemented in Matlab and the number of iterations for
greedy and Gibbs were chosen so that the run times would be the same as that of
loopy BMMF. Gibbs sampling started from m1, the most probable assignment, and
the greedy local search algorithm initialized to an assignment “similar” to m1 (1%
of the variables were chosen randomly and their values flipped).

For the protein folding problem [17], we used a database consisting of 325 proteins,
each gives rise to a graphical model with hundreds of variables and many loops. We
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Figure 3: The configurations found by loopy-BMMF compared to those obtained
using Gibbs sampling and greedy local search for a large toy-QMR model (right)
and a 32× 32 spin glass model (right).

compared the top 100 correct configurations obtained by the A∗ heuristic search
algorithm [8] to those found by loopy BMMF algorithm, using BP. In all cases where
A∗ was feasible, loopy BMMF always found the correct configurations. Also, the
BMMF algorithm converged more often (96.3% compared to 76.3%) and ran much
faster.

We then assessed the performance of the BMMF algorithm for a couple of relatively
small problems, where exact inference was possible. For both a small toy-QMR
model (with 20 diseases and 50 symptoms) and a 8×8 spin glass model the BMMF
algorithm obtained the correct MPCs.

Finally, we compared the performance of the algorithms for couple of hard problems
— a large toy-QMR model (with 100 diseases and 200 symptoms) and 32× 32 spin
glass model with large pairwise interactions. For the toy-QMR model, the MPCs
calculated by the BMMF algorithm were better than those calculated by Gibbs
sampling (Figure 3, left). For the large spin glass, we found that ordinary BP
didn’t converge and used max-product generalized BP instead. This is exactly the
algorithm described in [18] with marginalizations replaced with maximizations. We
found that GBP converged far more frequently and indeed the MPCs found using
GBP are much better than those obtained with Gibbs or greedy (Figure 3, right.
Gibbs results are worse than those of the greedy search and therefore not shown).
Note that finding the second MPC using the simple MFP algorithm requires a week,
while the loopy BMMF calculated the 25 MPCs in few hours only.

4 Discussion

Existing algorithms successfully find theM MPCs for graphs where building a JT is
possible. However, in many real-world applications exact inference is impossible and
approximate techniques are needed. In this paper we have addressed the problem
of finding the M MPCs using the techniques of approximate inference. We have
presented a new algorithm, called Best Max-Marginal First that will provably solve
the problem if MMs can be calculated exactly. We have shown that the algorithm
continues to perform well when the MMs are approximated using max-product loopy
BP or GBP.

Interestingly, the BMMF algorithm uses the numerical values of the approximate
MMs to determine what to do in each iteration. The success of loopy BMMF
suggests that in some cases the max product loopy BP gives a good numerical
approximation to the true MMs. Most existing analysis of loopy max-product [16,



15] has focused on the configurations found by the algorithm. It would be interesting
to extend the analysis to bound the approximate MMs which in turn would lead to
a provable approximate MPCs algorithm.

While we have used loopy BP to approximate the MMs, any approximate inference
can be used inside BMMF to derive a novel, approximate MPCs algorithm. In
particular, the algorithm suggested by Wainwright et al. [14] can be shown to give
the MAP assignment when it converges. It would be interesting to incorporate their
algorithm into BMMF.
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