
Efficient and Robust Feature Extraction by
Maximum Margin Criterion

Haifeng Li Tao Jiang
Department of Computer Science

University of California
Riverside, CA 92521

{hli,jiang}@cs.ucr.edu

Keshu Zhang
Department of Electrical Engineering

University of New Orleans
New Orleans, LA 70148
kzhang1@uno.edu

Abstract
A new feature extraction criterion, maximum margin criterion (MMC),
is proposed in this paper. This new criterion is general in the sense that,
when combined with a suitable constraint, it can actually give rise to
the most popular feature extractor in the literature, linear discriminate
analysis (LDA). We derive a new feature extractor based on MMC using
a different constraint that does not depend on the nonsingularity of the
within-class scatter matrix Sw. Such a dependence is a major drawback
of LDA especially when the sample size is small. The kernelized (nonlin-
ear) counterpart of this linear feature extractor is also established in this
paper. Our preliminary experimental results on face images demonstrate
that the new feature extractors are efficient and stable.

1 Introduction

In statistical pattern recognition, the high-dimensionality is a major cause of the practical
limitations of many pattern recognition technologies. In the past several decades, many di-
mensionality reduction techniques have been proposed. Linear discriminant analysis (LDA,
also called Fisher’s Linear Discriminant) [1] is one of the most popular linear dimension-
ality reduction method. In many applications, LDA has been proven to be very powerful.
LDA is given by a linear transformation matrix W ∈ RD×d maximizing the so-called
Fisher criterion (a kind of Rayleigh coefficient)

JF (W) =
WT SbW

WT SwW
(1)

where Sb =
∑c

i=1 pi(mi−m)(mi−m)
T and Sw =

∑c

i=1 piSi are the between-
class scatter matrix and the within-class scatter matrix, respectively; c is the number of
classes; mi and pi are the mean vector and a priori probability of class i, respectively;
m =

∑c

i=1 pimi is the overall mean vector; Si is the within-class scatter matrix of class
i; D and d are the dimensionalities of the data before and after the transformation, respec-
tively. To maximize (1), the transformation matrix W must be constituted by the largest
eigenvectors of S−1

w Sb. The purpose of LDA is to maximize the between-class scatter
while simultaneously minimizing the within-class scatter. The two-class LDA has a close
connection to optimal linear Bayes classifiers. In the two-class case, the transformation
matrix W is just a vector, which is in the same direction as the discriminant in the corre-
sponding optimal Bayes classifier. However, it has been shown that LDA is suboptimal for
multi-class problems [2]. A major drawback of LDA is that it cannot be applied when Sw

is singular due to the small sample size problem [3]. The small sample size problem arises



whenever the number of samples is smaller than the dimensionality of samples. For ex-
ample, a 64 × 64 image in a face recognition system has 4096 dimensions, which requires
more than 4096 training data to ensure that Sw is nonsingular. So, LDA is not a stable
method in practice when the training data are scarce.

In recent years, many researchers have noticed this problem and tried to overcome the com-
putational difficulty with LDA. Tian et al. [4] used the pseudo-inverse matrix S+

w instead
of the inverse matrix S−1

w . For the same purpose, Hong and Yang [5] tried to add a singular
value perturbation to Sw to make it nonsingular. Neither of these methods are theoretically
sound because Fisher’s criterion is not valid when Sw is singular. When Sw is singular, any
positive Sb makes Fisher’s criterion infinitely large. Thus, these naive attempts to calculate
the (pseudo or approximate) inverse of Sw may lead to arbitrary (meaningless) results. Be-
sides, it is also known that an eigenvector could be very sensitive to small perturbation if
its corresponding eigenvalue is close to another eigenvalue of the same matrix [6].

In 1992, Liu et al. [7] modified Fisher’s criterion by using the total scatter matrix St =
Sb + Sw as the denominator instead of Sw. It has been proven that the modified criterion
is exactly equivalent to Fisher’s criterion. However, when Sw is singular, the modified
criterion reaches the maximum value (i.e., 1) no matter what the transformation W is.
Such an arbitrary transformation cannot guarantee the maximum class separability unless
WT SbW is maximized. Besides, this method need still calculate an inverse matrix, which
is time consuming. In 2000, Chen et al. [8] proposed the LDA+PCA method. When Sw is
of full rank, the LDA+PCA method just calculates the maximum eigenvectors of S−1

t Sb to
form the transformation matrix. Otherwise, a two-stage procedure is employed. First, the
data are transformed into the null space V0 of Sw. Second, it tries to maximize the between-
class scatter in V0, which is accomplished by performing principal component analysis
(PCA) on the between-class scatter matrix in V0. Although this method solves the small
sample size problem, it is obviously suboptimal because it maximizes the between-class
scatter in the null space of Sw instead of the original input space. Besides, the performance
of the LDA+PCA method drops significantly when n − c is close to the dimensionality D,
where n is the number of samples and c is the number of classes. The reason is that the
dimensionality of the null space V0 is too small in this situation, and too much information
is lost when we try to extract the discriminant vectors in V0. LDA+PCA also need calculate
the rank of Sw, which is an ill-defined operation due to floating-point imprecisions. At last,
this method is complicated and slow because too much calculation is involved.

Kernel Fisher’s Discriminant (KFD) [9] is a well-known nonlinear extension to LDA. The
instability problem is more severe for KFD because Sw in the (nonlinear) feature space F
is always singular (the rank of Sw is n− c). Similar to [5], KFD simply adds a perturbation
µI to Sw. Of course, it has the same stability problem as that in [5] because eigenvectors
are sensitive to small perturbation. Although the authors also argued that this perturbation
acts as some kind of regularization, i.e., a capacity control in F , the real influence in this
setting of regularization is not yet fully understood. Besides, it is hard to determine an
optimal µ since there are no theoretical guidelines.

In this paper, a simpler, more efficient, and stable method is proposed to calculate the most
discriminant vectors based on a new feature extraction criterion, the maximum margin cri-
terion (MMC). Based on MMC, new linear and nonlinear feature extractors are established.
It can be shown that MMC represents class separability better than PCA. As a connection
to Fisher’s criterion, we may also derive LDA from MMC by incorporating some suitable
constraint. On the other hand, the new feature extractors derived above (based on MMC)
do not suffer from the small sample size problem, which is known to cause serious stabil-
ity problems for LDA (based on Fisher’s criterion). Different from LDA+PCA, the new
feature extractors based on MMC maximize the between-class scatter in the input space
instead of the null space of Sw. Hence, it has a better overall performance than LDA+PCA,
as confirmed by our preliminary experimental results.



2 Maximum Margin Criterion

Suppose that we are given empirical data

(x1, y1), . . . , (xn, yn) ∈ X × {C1, . . . , Cc}

Here, the domain X ∈ RD is some nonempty set that the patterns xi are taken from. The
yi’s are called labels or targets. By studying these samples, we want to predict the label
y ∈ {C1, . . . , Cc} of some new pattern x ∈ X . In other words, we choose y such that (x, y)
is in some sense similar to the training examples. For this purpose, some measure need be
employed to assess similarity or dissimilarity. We want to keep such similarity/dissimilarity
information as much as possible after the dimensionality reduction, i.e., transforming x
from RD to Rd, where d � D.

If some distance metric is used to measure the dissimilarity, we would hope that a pattern
is close to those in the same class but far from those in different classes. So, a good
feature extractor should maximize the distances between classes after the transformation.
Therefore, we may define the feature extraction criterion as

J =
1

2

c∑

i=1

c∑

j=1

pipjd(Ci, Cj) (2)

We call (2) the maximum margin criterion (MMC). It is actually the summation of 1
2c(c−1)

interclass margins. Like the weighted pairwise Fisher’s criteria in [2], one may also define
a weighted maximum margin criterion. Due to the page limit, we omit the discussion in
this paper.

One may use the distance between mean vectors as the distance between classes, i.e.

d(Ci, Cj) = d(mi,mj) (3)

where mi and mj are the mean vectors of the class Ci and the class Cj , respectively. How-
ever, (3) is not suitable since it neglects the scatter of classes. Even if the distance between
the mean vectors is large, it is not easy to separate two classes that have the large spread
and overlap with each other. By considering the scatter of classes, we define the interclass
distance (or margin) as

d(Ci, Cj) = d(mi,mj) − s(Ci) − s(Cj) (4)

where s(Ci) is some measure of the scatter of the class Ci. In statistics, we usually use the
generalized variance |Si| or overall variance tr(Si) to measure the scatter of data. In this
paper, we use the overall variance tr(Si) because it is easy to analyze. The weakness of the
overall variance is that it ignores covariance structure altogether. Note that, by employing
the overall/generalized variance, the expression (4) measures the “average margin” between
two classes while the minimum margin is used in support vector machines (SVMs) [10].

With (4) and s(Ci) being tr(Si), we may decompose (2) into two parts

J =
1

2

c∑

i=1

c∑

j=1

pipj(d(mi,mj) − tr(Si) − tr(Sj))

=
1

2

c∑

i=1

c∑

j=1

pipjd(mi,mj) −
1

2

c∑

i=1

c∑

j=1

pipj(tr(Si) + tr(Sj))

The second part is easily simplified to tr(Sw)

1

2

c∑

i=1

c∑

j=1

pipj(tr(Si) + tr(Sj)) =

c∑

i=1

pitr(Si) = tr

(
c∑

i=1

piSi

)
= tr(Sw) (5)



By employing the Euclidean distance, we may also simplify the first part to tr(Sb) as
follows

1

2

c∑

i=1

c∑

j=1

pipjd(mi,mj) =
1

2

c∑

i=1

c∑

j=1

pipj(mi−mj)
T
(mi−mj)

=
1

2

c∑

i=1

c∑

j=1

pipj(mi−m + m − mj)
T
(mi−m + m − mj)

After expanding it, we can simplify the above equation to
∑c

i=1 pi(mi−m)
T
(mi−m) by

using the fact
∑c

j=1 pj(m − mj) = 0. So

1

2

c∑

i=1

c∑

j=1

pipjd(mi,mj) = tr

(
c∑

i=1

pi(mi−m)(mi−m)
T

)
= tr(Sb) (6)

Now we obtain
J = tr(Sb − Sw) (7)

Since tr(Sb) measures the overall variance of the class mean vectors, a large tr(Sb) implies
that the class mean vectors scatter in a large space. On the other hand, a small tr(Sw)
implies that every class has a small spread. Thus, a large J indicates that patterns are close
to each other if they are from the same class but are far from each other if they are from
different classes. Thus, this criterion may represent class separability better than PCA.
Recall that PCA tries to maximize the total scatter after a linear transformation. But the
data set with a large within-class scatter can also have a large total scatter even when it has
a small between-class scatter because St = Sb + Sw. Obviously, such data are not easy
to classify. Compared with LDA+PCA, we maximize the between-class scatter in input
space rather than the null space of Sw when Sw is singular. So, our method can keep more
discriminative information than LDA+PCA does.

3 Linear Feature Extraction

When performing dimensionality reduction, we want to find a (linear or nonlinear) mapping
from the measurement space M to some feature space F such that J is maximized after the
transformation. In this section, we discuss how to find an optimal linear feature extractor.
In the next section, we will generalize it to the nonlinear case.

Consider a linear mapping W ∈ RD×d . We would like to maximize

J(W) = tr(SW
b −SW

w )

where SW
b and SW

w are the between-class scatter matrix and within-class scatter matrix in
the feature space F . Since W is a linear mapping, it is easy to show SW

b = WT SbW and
SW

w = WT SwW. So, we have

J(W) = tr
(
WT (Sb−Sw)W

)
(8)

In this formulation, we have the freedom to multiply W with some nonzero con-
stant. Thus, we additionally require that W is constituted by the unit vectors, i.e.
W = [w1 w2 . . . wd] and wT

k wk = 1. This means that we need solve the following
constrained optimization

max
d∑

k=1

wT
k (Sb−Sw)wk

subject to wT
k wk − 1 = 0 k = 1, . . . , d



Note that, we may also use other constraints in the above. For example, we may require
tr
(
WT SwW

)
= 1 and then maximize tr

(
WT SbW

)
. It is easy to show that maxi-

mizing MMC with such a constraint in fact results in LDA. The only difference is that it
involves a constrained optimization whereas the traditional LDA solves an unconstrained
optimization. The motivation for using the constraint wT

k wk = 1 is that it allows us to
avoid calculating the inverse of Sw and thus the potential small sample size problem.

To solve the above optimization problem, we may introduce a Lagrangian

L(wk, λk) =

d∑

k=1

wT
k (Sb−Sw)wk − λk(wT

k wk − 1) (9)

with multipliers λk. The Lagrangian L has to be maximized with respect to λk and wk.
The condition that at the stationary point, the derivatives of L with respect to wk must
vanish

∂L(wk, λk)

∂wk

= ((Sb−Sw) − λkI)wk = 0 k = 1, . . . , d (10)

leads to
(Sb−Sw)wk =λkwk k = 1, . . . , d (11)

which means that the λk’s are the eigenvalues of Sb−Sw and the wk’s are the correspond-
ing eigenvectors. Thus

J(W) =
d∑

k=1

wT
k (Sb−Sw)wk =

d∑

k=1

λkw
T
k wk =

d∑

k=1

λk (12)

Therefore, J(W) is maximized when W is composed of the first d largest eigenvectors of
Sb −Sw. Here, we need not calculate the inverse of Sw, which allows us to avoid the small
sample size problem easily. We may also require W to be orthonormal, which may help
preserve the shape of the distribution.

4 Nonlinear Feature Extraction with Kernel

In this section, we follow the approach of nonlinear SVMs [10] to kernelize the above linear
feature extractor. More precisely, we first reformulate the maximum margin criterion in
terms of only dot-product 〈Φ(x),Φ(y)〉 of input patterns. Then we replace the dot-product
by some positive definite kernel k(x,y), e.g. Gaussian kernel e−γ‖x−y‖2

.

Consider the maximum margin criterion in the feature space F

JΦ(W) =

d∑

k=1

wT
k (S

Φ
b −SΦ

w)wk

where SΦ
b and SΦ

w are the between-class scatter matrix and within-class scatter ma-
trix in F , i.e., SΦ

b =
∑c

i=1 pi(m
Φ
i − mΦ)(mΦ

i − mΦ)T , SΦ
w =

∑c

i=1 piS
Φ
i and

SΦ
i = 1

ni

∑ni

j=1(Φ(x
(i)
j ) − mΦ

i )(Φ(x
(i)
j ) − mΦ

i )T with mΦ
i = 1

ni

∑ni

j=1 Φ(x
(i)
j ), mΦ =

∑c

i=1 pim
Φ
i , and x

(i)
j is the pattern of class Ci that has ni samples.

For us, an important fact is that each wk lies in the span of Φ(x1),Φ(x2), . . . , Φ(xn).
Therefore, we can find an expansion for wk in the form wk =

∑n

l=1 α
(k)
l Φ(xl). Using this

expansion and the definition of mΦ
i , we have

wT
k mΦ

i =

n∑

l=1

α
(k)
l


 1

ni

ni∑

j=1

〈Φ(xl),Φ(x
(i)
j )〉






Replacing the dot-product by some kernel function k(x,y) and defining (m̃i)l =
1
ni

∑ni

j=1 k(xl,x
(i)
j ), we get wT

k mΦ
i = α

T
k m̃i with (αk)l = α

(k)
l . Similarly, we have

wT
k mΦ = wT

k

c∑

i=1

pim
Φ
i = α

T
k

c∑

i=1

pim̃i = α
T
k m̃

with m̃ =
∑c

i=1 pim̃i. This means wT
k (mΦ

i − mΦ) = α
T
k (m̃i − m̃). and

d∑

k=1

wT
k SΦ

b wk =

d∑

k=1

c∑

i=1

pi(w
T
k (mΦ

i − mΦ))(wT
k (mΦ

i − mΦ))T

=
d∑

k=1

c∑

i=1

pT
i α

T
k (m̃i − m̃)(m̃i − m̃)T

αk =
d∑

k=1

α
T
k S̃bαk

where S̃b =
∑c

i=1 pi(m̃i − m̃)(m̃i − m̃)
T .

Similarly, one can simplify WT SΦ
wW. First, we have wT

k (Φ(x
(i)
j ) − mΦ

i ) = α
T
k (k

(i)
j −

m̃i) with (k
(i)
j )l = k(xl,x

(i)
j ). Considering wT

k SΦ
i wk = 1

ni

∑ni

j=1(w
T
k (Φ(x

(i)
j ) −

mΦ
i ))(wT

k (Φ(x
(i)
j ) − mΦ

i ))T , we have

wT
k SΦ

i wk =
1

ni

ni∑

j=1

α
T
k (k

(i)
j − m̃i)(k

(i)
j − m̃i)

T
αk

=
1

ni

ni∑

j=1

α
T
k S̃i(ej −

1

ni

1ni
)(ej −

1

ni

1ni
)T S̃T

i αk

=
1

ni

ni∑

j=1

α
T
k S̃i(eje

T
j −

1

ni

ej1
T
ni
−

1

ni

1ni
eT

j +
1

n2
i

1ni
1T

ni
)S̃

T

i αk

=
1

ni

α
T
k S̃i(Ini×ni

−
1

ni

1ni
1T

ni
)S̃

T

i αk

where (S̃i)lj = k(xl,x
(i)
j ), Ini×ni

is the ni ×ni identity matrix, 1ni
is the ni-dimensional

vector of 1’s, and ej is the canonical basis vector of ni dimensions. Thus, we obtain

d∑

k=1

wT
k SΦ

wwk =
d∑

k=1

c∑

i=1

pi

1

ni

α
T
k S̃i(Ini

−
1

ni

1ni
1T

ni
)S̃

T

i αk

=

d∑

k=1

α
T
k

(
c∑

i=1

pi

1

ni

S̃i(Ini
−

1

ni

1ni
1T

ni
)S̃

T

i

)
αk =

d∑

k=1

α
T
k S̃wαk

where S̃w =
∑c

i=1 pi
1
ni

S̃i(Ini
− 1

ni

1ni
1T

ni
)S̃

T

i . So the maximum criterion in the feature
space F is

J(W) =

d∑

k=1

α
T
k (S̃b − S̃w)αk (13)

Similar to the observations in Section 3, the above criterion is maximized by the largest
eigenvectors of S̃b − S̃w.
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Figure 1: Experimental results obtained using a linear SVM on the original data (RAW), and the
data extracted by LDA+PCA, the linear feature extractor based on MMC (MMC) and the nonlinear
feature extractor based on MMC (KMMC), which employs the Gaussian kernel with γ = 0.03125.

5 Experiments
To evaluate the performance of our new methods (both linear and nonlinear feature extrac-
tors), we ran both LDA+PCA and our methods on the ORL face dataset [11]. The ORL
dataset consists of 10 face images from 40 subjects for a total of 400 images, with some
variation in pose, facial expression and details. The resolution of the images is 112 × 92,
with 256 gray-levels. First, we resized the images to 28 × 23 to save the experimental
time. Then, we reduced the dimensionality of each image set to c − 1, where c is the num-
ber of classes. At last we trained and tested a linear SVM on the dimensionality-reduced
data. As a control, we also trained and tested a linear SVM on the original data before its
dimensionality was reduced.

In order to demonstrate the effectiveness and the efficiency of our methods, we conducted
a series of experiments and compared our results with those obtained using LDA+PCA.
The error rates are shown in Fig.1(a). When trained with 3 samples and tested with 7 other
samples for each class, our method is generally better than LDA+PCA. In fact, our method
is usually better than LDA+PCA on other numbers of training samples. To save space,
we do not show all the results here. Note that our methods can even achieve lower error
rates than a linear SVM on the original data (without dimensionality reduction). However,
LDA+PCA does not demonstrate such a clear superiority over RAW. Fig. 1(a) also shows
that the kernelized (nonlinear) feature extractor based on MMC is significantly better than
the linear one, in particular when the number of classes c is large.

Besides accuracy, our methods are also much more efficient than LDA+PCA in the sense
of the training time required. Fig. 1(b) shows that our linear feature extractor is about 4
times faster than LDA+PCA. The same speedup was observed on other numbers of training
samples. Note that our nonlinear feature extractor is also faster than LDA+PCA in this case
although it is very time-consuming to calculate the kernel matrix in general. An explanation
of the speedup is that the kernel matrix size equals the number of samples, which is pretty
small in this case.

Furthermore, our method performs much better than LDA+PCA when n− c is close to the
dimensionality D. Because the amount of training data was limited, we resized the images
to 168 dimensions to create such a situation. The experimental results are shown in Fig. 2.
In this situation, the performance of LDA+PCA drops significantly because the null space
of Sw has a small dimensionality. When LDA+PCA tries to maximize the between-class
scatter in this small null space, it loses a lot of information. On the other hand, our method
tries to maximize the between-class scatter in the original input space. From Fig. 2, we can
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Figure 2: Comparison between our new methods and LDA+PCA when n− c is close to D.

see that LDA+PCA is ineffective in this situation because it is even worse than a random
guess. But our method still produced acceptable results. Thus, the experimental results
show that our method is better than LDA+PCA in terms of both accuracy and efficiency.

6 Conclusion
In this paper, we proposed both linear and nonlinear feature extractors based on the maxi-
mum margin criterion. The new methods do not suffer from the small sample size problem.
The experimental results show that it is very efficient, accurate, and robust.
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